
An Access Protocol for Mobile Satellite Users with Reduced Link Margins and Contention Probability

An Access Protocol for Mobile Satellite Users with Reduced Link Margins and Contention Probability

Marc Emmelmann^(*) Hartmut Brandt

Fraunhofer Institute Fokus Hermann Bischl Sandro Scalise

German Aerospace Agency (DLR)

ASMS 2003 July 10-11, 2003 Frascati, Italy

(*) corresponding Author: emmelmann@ieee.org

Outline

- Project Framework
- System Architecture
- Medium Access Control
- Rain Attenuation & Link Availability
- Link Availability with Adaptive Coding
- Efficiency of Adaptive FEC Schemes
- Adaptive FEC and Modulation Schemes
- Prototyping & Simulation Environment
- Link Level Delay
- Application Level Error Rates
- Shadowing Effects

Conclusion

Introduction

Protocol Design

Protocol Implementation

& Error Control

Measurements

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

	Introduction Project Framework
ATM-Sat	 ATM-based Multimedia Communication via LEO Satellites Design of entire system architecture Development of proof-of-concept demonstrator
Technical Aspects	 Support of mobile, fixed, and portable terminals Guaranteed QoS Switching and Routing in the sky (ATM switch as payload) Adaptive MAC and FEC schemes
Partner	 German Aerospace Agency (DLR) Fraunhofer Instititute Fokus (competence center CATS) Tesat-Spacecom Financed by: German Ministry for Education and Research

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Page 4

Introduction System Architecture

Satellite Constellation

Link Parameters

- LEO orbit (1350 km)
- Walker 72 satellites, 12 planes, 47° inclined
- Optical ISLs
- 20° min. elevation angle
- Ka-Band
- approx. 2 Mbit/s in the uplink
- approx. 32 Mbit/s in the downlink
- 16 kbit/s adjustment steps
- QPSK modulation (if not other mentioned)

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Fraunhofer Institute for Open Communication Systems

Protocol Design & Error Control Medium Access Control

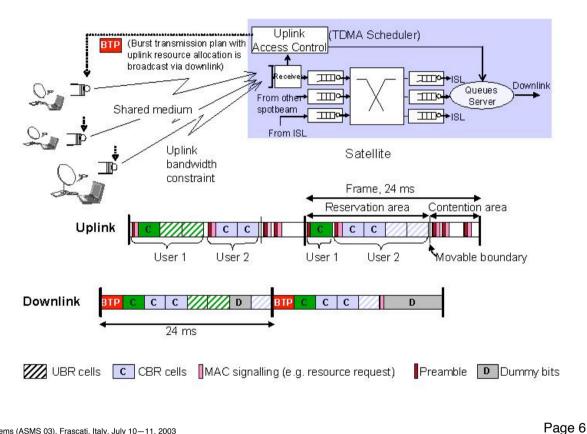
On-board XS control & scheduling

FDD in the up- & downlink

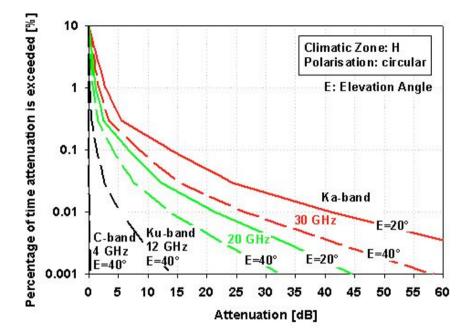
MF-TDMA scheme in the uplink

Frame length 24ms --> 16kbit/s bandwidth granularity with ATM cells

Reservation and Contention area with movable boundary


BTP contains resource assignment for next uplink frame

Usage of extended VPI/VCIs


emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

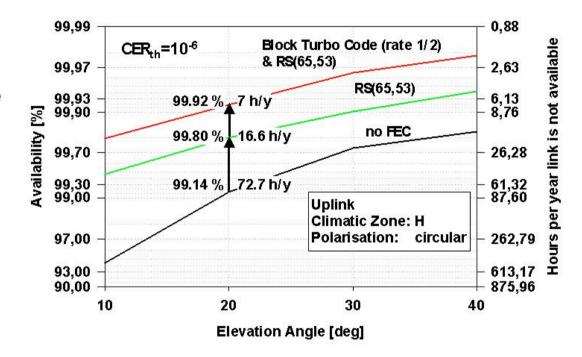
Protocol Design & Error Control Rain Attenuation & Link Availability

Attenuation in Ka-Band dominated by rain effects Directional antennas eliminate multi-path fading Rain attenuation appears only from time to time → Adaptive FEC and modulation most efficiently use the available bandwidth

Goal: Cell Error Rate $\leq 10^{-6}$

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003


Protocol Design & Error Control Link Availability with Adaptive Coding

Adaptive Coding:

- 4-byte CRC only
- RS(65,53)
- RS(65,53) & Rate 1/2 Turbo Code

Worst case: guarantee CER_{th} of 10⁻⁶ at min. elevation angle

- without FEC --> 99.14%
- RS(65/53) --> 99.80%
- convolutional code --> 99.92%

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Fraunhofer Institute for Open Communication Systems

Protocol Design & Error Control Efficiency of Adaptive FEC Schemes

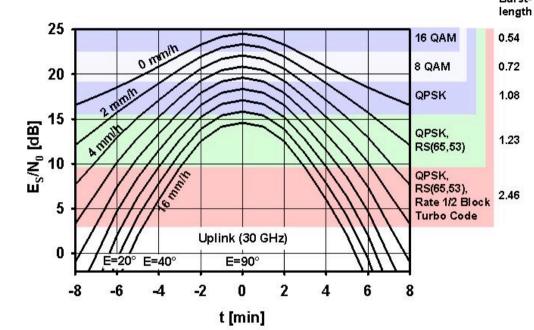
ABLP

= Availability BurstLength Product

Constant RS(65/53) Coding	ABLP	= =	99.8% * 65/53 1.22	
Adaptive Coding	ABLP	=	99.14% * 57/53 + 0.66% * 65/53 + 0.12% * 130/53 1.08	(4-byte CRC) (RS-Code) (RS & Turbo)

Adaptive Coding Scheme guarantees higher link availability for the given CER_{th} with an even better bandwidth utilization.

emmelmann@ieee.org
U.


ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Fraunhofer Institute for Open Communication Systems

Protocol Design & Error Control Adaptive FEC and Modulation Schemes

Burstlength

Rain attenuation occurs only occasionally

 \rightarrow Rainless periods with a rather good S/N₀ allow to switch modulation schemes

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Page 10

Prototyping & Simulation Environment Key Features: Std. COTS components Focus on target system FreeBSD 5 current-version Core Units: Sat, channel emulator Configurable via SNMP Adds variable delay control station PDF Packet corruptions Shadowing satellite channel Х emulation "External VSAT System" Protocol Dev. Entity erminal PDE Netgraph used for devel. PDE optical splitting PDE **Control Station** Initializes SCE & PDE PC athemat (estallite channel ethernet (managemen

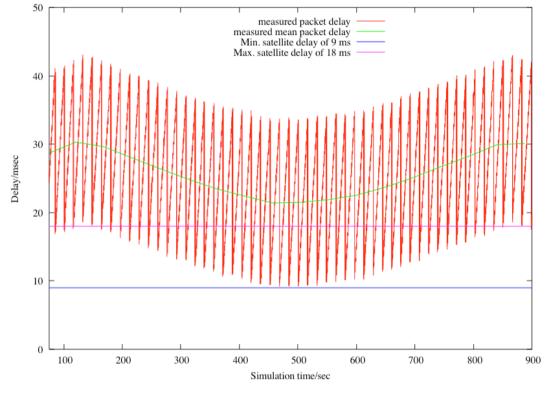
Protocol Implementation

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Page 11

Measurements Link Level Delay


Sender cell rate: 1/24ms (one cell/frame)

Application and MAC not synchronized

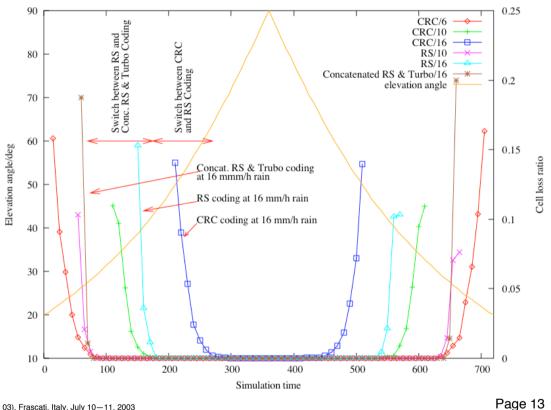
Application computes time to send with regard to the start time of application, DLC starts a new 24-ms timer after every frame

→Jitter in clock may cause application to send cells at different times wrt. the beginning of a MAC Frame (cell may have to wait for next MAC frame)

 \rightarrow Measured mean delay 1/2 framelength larger than theory

emmelmann@ieee.org

ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

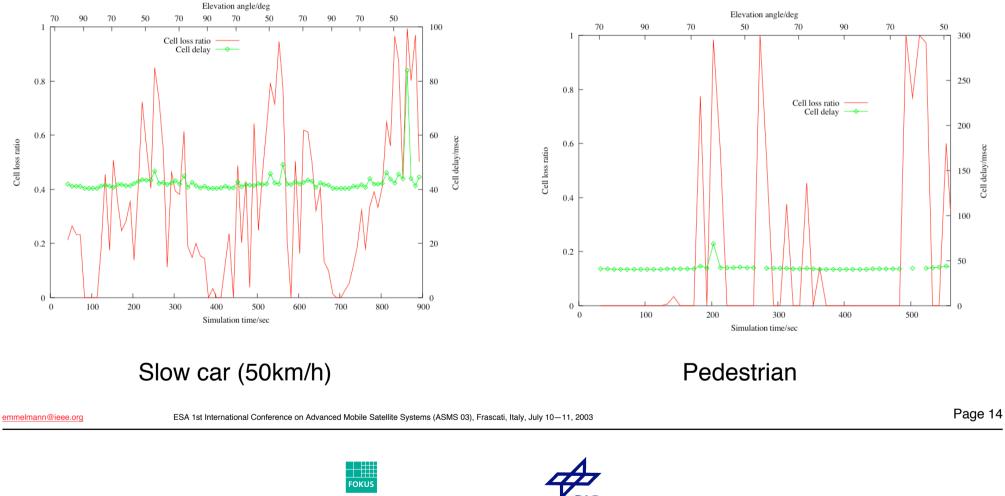


Measurements Application Level Error Rates

Graph shows measured cell loss ratio for a given rain intensity (in mm/h) and coding scheme (CRC, RS, or Concatenated RS & Turbo)

Sophisticated coding schemes significantly improve availability at the cost of bandwidth

Simple CRC efficient for rainless periods and low rain intensities at high elevation angles.



ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003

Measurements Shadowing Effects

Conclusion

Measurements-Proof of concept implement (available for FreeBSD)-Show correct timing behavia Illustrate advantages of ada according to rain intensity atFurther InformationCorresponding author: emm	ation used
Further Information - Corresponding author: emn	apting coding scheme
 http://www.fokus.fraunhofer http://www.dlr.de 	<u>v</u>
emmelmann@ieee.org ESA 1st International Conference on Advanced Mobile Satellite Systems (ASMS 03), Frascati, Italy, July 10-11, 2003	Page 15

