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Abstract-Traditionally, network software has been structured
in a monolithic fashion with all protocol stacks executing either
within the kernel or in a single trusted user-level server. This
organization is motivated by performance and security concerns.
However, considerations of code maintenance, ease of debug-
ging, customization, and the simultaneous existence of multiple
protocols argue for separating the implementations into more
manageable user-levei iibraries of protocois. This paper describes
the design and implementation of transport protocols as user-
Ievei libraries.

We begin by motivating the need for protocol implementations
as user-level iibrariea and placing our approach in the context of
previous work. We then describe our alternative to monolithic
protocol organization, which has been implemented on Mach
workstations connected not only to traditional EtherneL but also
to a more modern network, the DEC SRC AN1. Baaed on our
experience, we dtscuss the implications for host-network interface
design and for overall system structure to support efficient user-
Ievel implementations of network protocols.

1. lNTRODUaON

A. 140tivation

TYPICALLY, NETWORK PROTOCOLS have been im-
plemented inside the kernel or in a trusted user-level

server [11 ], [13]. Security and/or performance are the primary
reasons that favor such an organization. We refer to this or-
ganization as monolithic because all protocol stacks supported
by the system are implemented within a single address space.

The goal of this paper is to explore alternatives to a mono-
lithic structure. There are several factors that motivate protocol
implementations that are not monolithic and are outside the
kernel. The most obvious of these are ease of prototyping,
debugging, and maintenance. Two more interesting factors are:

1) The co-existence of multiple protocols that provide
materially differing services, and the clear advantages
of easy addition and extensibility by separating their
implementations into self-contained units.

2) The ability to exploit application-specific knowledge for
improving the perfotmtance of a particular communica-
tion protocol.

We expand on these two factors in greater detail below.
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1. Multiplicity of Protocols: Over the years, there has been
a proliferation of protocols driven primarily by application
needs.

For example, the need for an efficient transport for dis-
tributed systems was a factor in the development of re-
quest/response protocols in lieu of existing byte-stream pro-

tocols such as TCP [2]. Experience with specialized protocols

shows that they achieve remarkably low latencies. However

these protocols do not always deliver the highest throughput

[3]. In systems that need to support both throughput-intensive
and latency-critical applications, it is realistic to expect both
types of protocols to co-exist.

We expect the trend towards multiple protocols to continue

due to at least three factors.
Emerging communication modes such as graphics and

video, and access patterns such as request-response, bulk
transfer, and real-time, will require transport services which

may have differing characteristics. Further, the needs of

integration require that these transport services co-exist on
one system.

Future uses of workstation clusters as message passing
multicomputers will undoubtedly influence protocol design:
efficient implementations of this and other programming
paradigms will drive the development of new transport
protocols.

As newer networks with different speed and error charac-
teristics are deployed, protocol requirements will change. For

example, higher speed, low error links may favor forward error

correction and rate-based flow control over more traditional
protocols [7]. Once again, if different network links exist at a
single site, multiple protocols may need to co-exist.

2. Exploiting Application Knowledge: In addition to using
special purpose protocols for dtfferent application areas, fur-

ther performance advantages may be gained by exploiting
application-specific knowledge to fine tune a particular in-
stance of a protocol. Watson and Marnrak have observed that

conflicts between application-level and transport-level abstrac-
tions lead to performance compromises [29]. One solution to
this is to “partially evaluate” a general purpose protocol with
respect to a particular application. In this approach, based on
application requirements, a specialized variant of a standard
protocol is used rather than the standard protocol itself. A dif-
ferent application would use a slightly different variant of the

same protocol. Language-based protocol implementations such

as Morpheus [1] as well as protocol compilers [9], [10] are two
recent attempts at exploiting user specified constraints to gen-
erate efficient implementations of communication protocols.

The general idea of using partial evaluation to gain better
1/0 performance in systems has been used elsewhere as well
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Fig. 1, Alternative organizations of protocols.

[ 16]. In particular, the notion of specializing a transport
protocol to the needs of a particular application has been the
motivation behind many recent system designs [12], [23], [27].

B. A lternati~’e Protocol Structures

The discussion above argues for alternatives to monolithic

protocol implementations since they are deficient in at least
two ways. First, having all protocol variants executing in a
single address space (especially if it is in-kernel) compli-
cates code maintenance, debugging, and development. Second,
monolithic solutions limit the ability of a user (or a mechanized

program) to perform application-specific optimization.
In contrast, given the appropriate mechanisms in the kernel,

it is feasible to support high performance and secure imple-
mentations of relatively complex communication protocols as
user-level libraries.

Fig. 1 shows different alternatives for structuring commu-
nication protocols.

Surprisingly, traditional operating systems like UNIX and
modem microkemels such as Mach 3.0 have similar mono-
lithic protocol organizations. For instance, the Mach 3.0 mi-
crokemel implements protocols outside the kernel within a
trusted user-level server’. The code for all system-supported

protocols runs in the single, trusted, UX server’s address space.
There are at least three variations to this basic organization
depending on the Ioeation of the network device management
code, and the way in which the data is moved between
the device and the protocol server. In one variant of the
system, the Mach/UX server maps network devices into its

address space, has direct access to them, and is functionally
similar to a monolithic in-kernel implementation. In the second
variant, device management is Ioeated in the kernel. The in-
kemel device driver and the UX server communicate through

1This is the UX server, no[ to be confused with the NetMsgServer.

a message based interface. The performance of this variant
is lower than the one with the mapped device [ I I]. Some
of the performance lost due to the message based interface
can potentially be recovered by using a third variant that
uses shared memory to pass data between the device and the
protocol code as described in [22].

One alternative to a monolithic implementation is to ded-
icate a separate user-level server for each protocol stack,
and separate server(s) for network device management. This
arrangement has the potential for performance problems since
the critical send/receive path for an application could incur ex-
cessive domain-switching overheads because of address space
crossings between the user, the protocol server, and the device
manager. That is, given identical implementations of the
protocol stack and support functions like buffering, layering

and synchronization, inter-domain crossings come at a price.
Further, and perhaps more importantly, this arrangement, like

the monolithic version, does not permit easy exploitation of
application-level information.

Perhaps the best known example of this organization was
done in the context of the Packet Filter [ 19]. This system
implemented packet demultiplexing and device management
within the kernel and supported implementations of standard
protocols such as TCP and VMTP outside the kernel. It did
not rely on any special-purpose hardware or on extensive

operating system support. Several protocols including the PUP
suite and VMTP were implemented. A similar organization for
implementing UDP is described in [14].

Another alternative, the one we develop in this paper, is
to organize protocol functions as a user linkable library. In
the common case of sends and receives, the library talks to
the device manager without involving a dedicated protocol

server as an intermediary. (Issues such as security need to be
addressed in this approach and are considered in greater detail
in Section 111.)
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An earlier example of this approach is found in the Topaz
implementation of UDP on the DEC SRC Firefly [26]. Here the
UDP library exists in each user address space. However, this
experiment has some limitations. First, UDP is an unreliable
datagram service, and is easier to implement (and thus a less
realistic test) than a protocol like TCP. Second, the design of
Topaz trades off strict protection for increased performance
and ease of implementation of protocols.

A more recent example of encapsulating protocols in user-
level libraries is the ongoing work at CMU that implements
application level protocols beneath a UNIX compatible inter-
face [15]. This work shares many features with ours, differing
principally in the following: (1) the CMU implementation
enforces less control on outgoing packets, thus providing less
protection than our implementation, and (2) unlike the CMU
implementation, ours does not provide the full semantics of the

UNIX socket interface, meaning that not all existing UNIX
programs will work with our implementation. We believe it
would be easy to combine the two implementations into one
that has neither of these deficiencies.

In general, there are several alternatives to distributing the
implementation of a set of protocols among a set of address
spaces (e.g., the application, a trusted server, the kernel).
Each resulting organization leads to tradeoffs in performance,
protection, ease of debugging, etc. This paper describes the
design and implementation of one such organization—where
the protocol suite is located in a user level library-and
compares it with the in-kernel and single server alternatives.
We explored this particular organization for reasons mentioned
in Section I-A. Current research at the University of Arizona
[20], [21 ] tries to address the general question of protocol
decomposition into multiple domains in the context of the x-
kemel. Portioning an x-kernel protocol graph among different
address spaces allows performance and trust tradeoffs of
various protocol organizations to be easily explored.

C. Paper Goals and Organization

The primary goal of this paper is to explore high-
performance implementations of relatively complex protocols

as user libraries. We believe that efficient protocol implemen-
tation is a matter of policy and mechanism. That is, with
the right mechanisms in the kernel and support from the
host-network interface, protocol implementation is a matter

of policy that can be performed within user libraries. Given
suitable mechanisms, it is feasible for library implementations

of protocols to be as efficient and secure as traditional
monolithic implementations.

We have tested our hypothesis by implementing a user-level
library for TCP on workstation hosts running the Mach kernel

connected to Ethernet and to the DEC SRC AN 1 network
[24]. We chose TCP for several reasons. First, it is a real
protocol whose level of detail and functionality match that of
other communication protocols; choosing a simpler protocol
like UDP would be less convincing in this regard. Second, we
could expedhiously reuse code from one of the many existing
implementations of the protocol. Since these implementations
are mature and stable, performance comparisons with mono-

lithic implementations on similar hardware are straightforward
and unlikely to be affected by artifacts of bad or incorrect
implementation. Finally, our experience with a connection-
oriented protocol is likely to be relevant in networks like

ATM that appear to be biased toward connection-oriented
approaches.

The rest of the paper is organized as follows. Section 11de-

scribes the necessary kernel and host-network interface mech-
anisms that aid efficient user-level protocol implementations.
Section 111 details the structure, design and implementation
of our system. Section IV analyzes the performance of our
TCP/IP implementation. Section V offers conclusions based
on our experience and suggests avenues for future work.

II. MECHANISMS FOR USER-LEVEL

PROTOCOL IMPLEMENTATION

In this section, we discuss some of the fundamental system
mechanisms that can help in efficient user-level protocol im-
plementation. The underpimings of efficient communication
protocols are one or more of

1) Lightweight implementation of context switches and
timer events.

2) Combining (or eliminating) multiple protocol layers.

3) Improved buffering between the network, the kernel, and
the user, and elimination of unnecessary copies.

The first two items—lightweight context switching, layer-
ing, and timer implementations—have already been studied
in earlier systems and are largely independent of whether the
protocols are located in the kernel or in user libraries. We
therefore briefly summarize the impact of these factors in
Section II-A, and then concentrate for the most part on the
buffering and packet delivery mechanisms, where innovation
is needed.

A. Layering, Lightweight Threads, and Fast Timer Operations

Transport protocol implementations can benefit from being

multithreaded if inter-thread switching and synchronization
costs are kept low. Older operating systems such as UNIX do
not provide the same level of support for multiple threads of
control and synchronization in user space as they do inside the
kernel. Consequently, user-level implementations of protocols
are more difficult and awkward to implement than they need

to be. Whh more modem operating systems, which support
lightweight threads and synchronization at user-level, protocol
implementation at user-level enjoys the facilities that more
traditional implementations exploited within the kernel.

Issues of layering, lightweight context switching and timers
have been extensively studied in the literature. Examples
include Clark’s Swift system [4], the x-kernel [12], and the
work by Watson and Mamrak [29], It is well known that

switching between processes that implement each layer of
the protocol is expensive, as is the data copying overhead.
Proposed solutions to the problem are generally variations
of Clark’s multitask modules, where context switches are
avoided in moving data txtween the various transport layers.
Additionally, there are many well understood mechanisms for
fast context switches, such as continuations [8] and others.
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Timer implementations also have a profound impact on trans-

port performance, because practically every message arrival
and departure involves timer operations. Once again, fast
implementations of timer events are well known, e.g., using
hierarchical timing wheels [28].

B. E&cient Bufiering and Input Packet Demultiplexing

The buffer layer in a communication system manages data

buffers between the user space, the kernel and the host-
network interface. The security requirements of the kernel

transport protocols, and the support provided by the host-
network interface, all contribute to the complexity of the buffer
layer.

A key requirement for user-level protocols is that the buffer
layer be able to deliver network packets to the end user as

efficiently as possible. This involves two aspects: ( 1) efficient
demultiplexing of input packets based on protocol headers,

and (2) minimizing unnecessary data copies. Demultiplexing
functions can be located in two places: either in hardware in
the host-network interface, or in software, in the kernel or as a
separate user-level demuhiplexer. In any case, demultiplexing
has to be done in a secure fashion to prevent unauthorized
packet reception. We describe below two approaches to sup-
port input packet delivery that can benefit user-level protocol
implementations.

1. Sofiware Support for Packet Deli\ery: Typically, there
are multiple headers appended to an incoming packet, for
example, a link-level header, followed by one or more higher-
Ievel protocol headers. Ideally, address demultiplexing should
be done as low in the protocol stack as possible, but should
dispatch to the highest protocol layer [25]. This is usually
not done in hardware because the host-network interface
is typically designed for link-level protocols and has no
knowledge of higher level protocols. As a specific example.

a TCP/IP packet on an Ethernet link has three headers. The
link-level Ethernet header only identifies the station address
and the packet type—in this case, 1P. This is not sufficient
information to determine the final user of the data, which
requires examining the protocol control block maintained by
the TCP module.

In the absence of hardware support for address demultiplex-
ing. the only realistic choice is to implement this in software
inside the kernel. The alternative of using a dedicated user-
level process to demultiplex packets can be very expensive

because multiple context switches are required to deliver
network data to the final destination. In the past, software
implementations of address demultiplexing have offered flex-
ibility at the expense of performance and have ignored the
issues of multiple data copies.

For example, the original UNIX implementation of the
Packet Filter [ 19] features a stack-based language where “filter

programs” composed of stack operations and operators are
interpreted by a kernel-resident program at packet reception
time. While the interpretation process offers flexibility, it is
not likely to scale with CPU speeds because it is mem-
ory intensive. Performance is more important than flexibility
because slow packet demultiplexing tends to confine user-

level protocol implementations to debugging and development

rather than production use. The recent Berkeley Packet Filter
implementation recognizes these issues and provides higher

performance suited for modem RISC processors [18 ].
In the absence of hardware support, effective input demul-

tiplexing requires two mechanisms:

I ) Support for direct execution of demultiplexing code

within the kernel.

2) Support for protected packet buffer sharing between user

space and the kernel.

Neither of these facilities is very difficult to implement. The

logic required for address demultiplexing is simple and can be
incorporated into the kernel either via run time code synthesis
or via compilation when new protocols are added [ 17]. Based
on our experience, the demultiplexing logic requires only a
few instructions. In addition, virtual memory operations can

be exploited so that the user-level library and the kernel

can securely share a buffer area. Section 111describes how

these mechanisms are exploited in our design to achieve good
performance without compromising security.

2. Hat-d~’are Support fhr Demultiple.ring: [n general, older
Ethernet host-network interfaces do not provide support for
packet demuhiplexing because it is not possible to accurately
determine the final destination of a packet based on link-level
fields alone. Intelligent host-network interfaces that offload

protocol processing from the host are capable of packet

demultiplexing, but their utility is limited to a single protocol

at a time. Newer networks such as AN I and ATM have fields
in their link-level headers that may be used to provide support
for packet demultiplexing.

Host-network interfaces can be built to exploit these link-
level fields to provide address demultiplexing in a protocol-
independent manner. As an example, the host-network in-

terface that we use on the AN 1 network has hardware that

delivers network packets to the final destination process. In

the AN 1 controller a single field (called the buffer queue
index, BQI ) in the link-level packet header provides a level of

indirection into a table kept in the controller. The table contains
a set of host memory address descriptors, which specify the

buffers to which data is transferred. Strict access control to
the index is maintained through memory protection. In a
connection-based protocol such as TCP, the index value can be
agreed upon by communicating entities as part of connection
setup. Connectionless protocols can also use this facility by

“discovering” the index value of their peer by examining

the link-level headers of incoming messages. Section 111-D

discusses this mechanism in the context of our implementation.
In considering mechanisms for packet delivery, two overall

comments are in order. First, hardware support for packet
demultiplexing is applicable only as long as the link level
supports it. In the cases where a packet has to traverse
one or more networks without a suitable link header field,

demultiplexing has to be done in software. Second, details of
the packet demultiplexing and delivery scheme are shielded

from the application writer by the protocol library that is linked
into the application. The application sees whatever abstraction
the protocol library chooses to provide. Thus, programmer
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Fig. 2. Structure of the protocol implementation.

convenience is not an issue with either a software or hardware
packet delivery scheme.

III. DESIGN ANO IMPLEMENTATION

OF USER-LEVEL PROTOCOLS

A. Design Overview

This section describes our design at a high level. In our
design, protocol functionality is provided to an application by
three interacting components—a protocol library that is linked
into the application, a registry server that runs as a privileged
process, and a network 1/0 module that is co-located with the
network device driver. Fig. 2 shows an overall view of our
design and the interaction between the components.

The library contains the code that implements the com-
munication protocol. For instance, typical protocol functions
such as retransmission, flow control, checksumming, etc., are
located in the library. Given the timeout and retransmission
mechanisms of reliable transport protocols, the library typi-
cally would be multithreaded. Applications may link to more
than one protocol library at a time. For example, an application
using TCP will typically link to the TCP, 1P, and ARP libraries.

The registry server handles the details of allocating and
deallocating communication end-points on behalf of the ap-
plications. Before applications can communicate with each
other, they have to be named in a mutually secure and
nonconflicting manner. The registry server is a trusted piece
of software that runs as a privileged process and performs
many of the functions that are usually implemented within
the kernel in standard protocol implementations. There is a
dedicated registry server for each protocol.

The third module implements network access by provid-
ing efficient and secure input packet delivery, and outbound
packet transmission. There is one network 1/0 module for
each host-network interface on the host. Depending on the
support provided by the host-network interface, some of the

functionality of this module may be in hardware.
Given the library, the server, and the network 1/0 module,

applications can communicate over the network in a straight-
forward fashion. Applications call into the library using a
suitable interface to the transport protocol (e.g., the BSD
socket or the AT&T TLI interface). The library contacts the
registry server to negotiate names for the communication

entities. In connection-oriented protocols this might require

the server to complete a connection establishment protocol
with a remote entity. Before returning to the library, the
registry server contacts the network 1/0 module on behalf of

the application to set up secure and efficient packet delivery

and transmission channels. The server then returns to the
application library with unforgeable tickets or capabilities for
these channels. Subsequent network communication is handled
completely by the user-level library and the network I/O
module using the capabilities that the server returned. Thus, the
server is bypassed in the common path of data transmission
and reception.

Our organization has some tangible benefits over the alter-
native approaches of a monolithic implementation, or having a

ddlcated server per protocol stack. Our approach has software
engineering arguments to recommend it over the monolithic
approach. More importantly, our structure is likely to yield
better performance than a system that uses a single dedicated
server per protocol stack for two reasons. First, by eliminating
the server from the common-case send and receive paths, we
reduce the number of address space transitions on the critical

path. Second, we open the possibility of additional perfor-
mance gains by generating application-specific protocols.

Our approach is not without its disadvantages, however.
Each application links to a communication library that might
be of substantial size. This could lead to code bloat which
might stress the VM system. This problem can be solved
with shared libraries and therefore is not a serious concern.
Further, protocol implementations in user-level libraries result
in tradeoffs in several areas like maintaining shared com-
munication state between multiple address spaces, respecting
pre-determined communication rate guarantees, ensuring the
integrity of the connection, and others. We discuss these in

further detail in Section III-E.
To test the viability of our design, we built and analyzed

the performance of a complete and nontrivial communication
protocol. We chose TCP primarily because it is a realistic
comection-oriented protocol. We used Mach as the base oper-
ating system for our implementation. In Mach, a small kernel
provides fundamental operating system mechanisms such as
process management, virtual memory, and IPC. Traditional
higher level operating system services are implemented by a

user-level server. We chose Mach because it provides user-
Ievel threads and synchronization, virtual memory operations
to simplify buffer management, and unforgeable capabilities
in the form of Mach “port” abstractions, all of which are
helpful in user-level protocol implementations. Of particular
benefit are Mach’s “ports,” which form the basis for secure
and trusted communication channels between the library, the
server, and the network 1/0 module. We deseribe below the
details of our implementation.

t?. Protocol Library

When an application initiates a connection, the library
contacts the registry server to allocate connection end-points
(in our case, TCP ports). After the registry server finishes the
connection establishment with the remote peer, the regisny

server returns a set of Mach ports to the library.
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The Mach ports returned to the application contain a send

capability. In addition, a virtual memory region in the library is
mapped shared with the particular I/O module for the network
device that the connection is using. This shared memory region
is used to convey data between the protocol and the network
device. Application requests to write (or read) data over a
connection are translated into protocol actions that eventually
cause packets to be sent (or received) over the network via

the shared memory.

On transmissions, the library uses the send capability to
identify itself to the network module. The network 1/0 mod-

ule associates with the capability a template that constrains
the header fields of packets sent using that capability. The
network 1/0 module verifies this against the library packet be-
fore network tmnsrnission. On receives, packet demultiplexing
code within the network 1/0 module delivers packets to the

correct and authorized end points. Additional details of this
mechanism are described in Section HI-D.

Once a connection is established, it can be passed by the
application to other applications without involving the registry
server or the network 1/0 module. The port abstractions
provided by the Mach kernel are sufficient for this. A typical
instance of this occurs in UNIX-based systems where the
Internet daemon (ine~d) hands off connection end-points to
specific servers such as the TELNET or FTP daemons.

The protocol library is the heart of the overall protocol im-

plementation. It contains the code that implements the various

functions of the protocol dealing with data transmission and
reception. The protocol code is borrowed entirely from the UX
server which in turn is based on a 4.3 BSD implementation.
As mentioned earlier, to use TCP, support from other protocol
libraries such as 1P and ARP are needed. Our implementation
of the 1P and ARP libraries makes some simplifications. In
particular, our 1P library does not implement the functions
required for handling gateway traffic.

Though the bulk of the code in our library is identical to

a BSD kernel implementation. the structure of the library is
slightly different. First, the protocol library is not driven by
interrupts from the network or traps from the user. Instead,
network packet arrival notification is done via a lightweight
semaphore that a library thread is waiting on, and user ap-
plications invoke protocol functions through procedure calls.
Second, multiple threads of control and synchronization are
provided by user-level C Thread primitives [5] rather than
kernel primitives. In addition, protocol control block lookups
are eliminated by having separate threads per connection that

are upcalled, Finally, user data transfer between the application
and the network device exploits shared memory to avoid copy
costs where possible. We describe the details of data transfer
in Section 111-C.

While it is usually the case that transport protocols are
standardized, the application interface to the protocol is not.
This leads to multiple ad hoc mechanisms which are typically
mandated by facilities of the underlying o~rating system. For
instance, the BSD socket interface and the AT&T TLI interface
are typically found in UNIX-based systems. Non-UNIX sys-
tems have their own interfaces as well. In our implementations,
we provide some but not all the functionality of the BSD

socket layer. Though a BSD-compliant socket interface was
not a goal of our research, our functionality is close enough
to run BSD applications. For instance, users of the protocol
library continue to create sockets with socket, call bind to
bind to sockets, and use connect, listen, and accept to
establish connections over sockets. Data transfer on connected
sockets and regular files is done as usual with read and
writ e calls. The library handles all the bookkeeping details.

Our current implementation does not handle the notions of

inheriting connections via fork, or the semantics of se 1 ect;

this does not represent a limitation of our approach, but rather
a decision on where to focus our attention.

C. Network 110 Module

The network 1/0 module is located with the in-kernel
network device driver. There is a separate module for each
network device. The primary function of the network 1/0

module is to provide efficient and protected access to the

network by the libraries.
All access to the network 1/0 module is through capabilities.

Initially, only the privileged registry server has access to the
network module. At the end of connection establishment, the
registry server and the network 1/0 module collaborate in
creating capabilities that are returned to the application. A
region of memory is created by the network 1/0 module and
the registry server for holding network packets. This memory

is kept pinned for the duration of the connection and is shared
with the application. Incoming packets from the network are
moved into the shared region and a notification is sent to the
application library via a lightweight semaphore. Our imple-
mentation attempts, where possible, to batch multiple network
packets per semaphore notification in order to amortize the
cost of signaling.

The exact mechanism for transferring the data from the net-
work to shared memory varies with the host-network interface.

The DECstation hosts connect to the Ethernet using the DEC
PMADD-AA host-network interface [6]. This interface does
not have DMA capabilities to and from the host memory.
Instead, there are special packet buffers on board the controller
that serve as a staging area for data. The host transfers data
between these buffers and host memory using programmed
1/0. On receives, the entire packet, complete with network
headers, is made available to the protocol code.

In contrast, the AN 1 host-network interface is capable of
performing DMA to and from host memory. Host software
writes descriptors into on-board registers that describe buffers
in host shared memory that will hold incoming packets. The
controller allows a set of host buffers to be aggregated into a
ring that can be named by an index called the buffer queue
index (BQI). Incoming network packets contain a BQI field
that is used by the controller in determining which ring to use.
The controller initiates DMA into the next buffer in this ring
and hands the buffer to the protocol 1ibrary. When the library
is done with the buffer it hands it back to the network module
which adds it to the BQI ring. As with the Ethernet controller,
complete packets, including network headers, are transferred
to shared memory.
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On outbound packet transmissions, the library makes a sys-
tem call into the network module. The system call arguments
describe a packet in shared memory as well as supplying a send
capability. The capability identifies the template, including the

BQI in the case of the AN1, against which the packet header
is checked.

In our design, the network I/O module and the library

are both involved in managing the shared buffer memory.
However, the end user application need not be aware of this
nlemory management because the protocol library handles all
the details. For the library, bookkeeping of shared memory is
a relatively modest task compared to the buffer management

that must be performec
and retransmission.

D. Registry Server

The registry server

to handle segmentation, reassembly,

uns as a trusted, privileged process
managing the allocation and deallocation of communication

end-points. There are several reasons that a central, trusted
agent is required to mediate the allocation of these end-points.
First, connection end-points act as names of the communi-

cating entities and are therefore unique across a machine for
a particular protocol. Thus, having untrusted user libraries
allocate these names is a security and administrative concern.
Second, in many protocols (including TCP), connection state
needs to be maintained after a connection is shut down. A
transient user Iinkable library is clearly not appropriate for
this.

In connection-oriented protocols like TCP, connection es-

tablishment and communication end-point allocation are often
intertwined. For example, the registry server for TCP ex-

ecutes the three-way handshake as part of the connection
establishment. Thus, our organization can be logically thought
of as the protocol library providing a set of functions to
both the application and the registry server. Each executes
a different subset of the functidhality provided in the library.
The registry server, as part of allocating communication end-
points, also transfers necessary state about the communication.

Under normal operation, connection shutdown is done by
the protocol library. However, when the application exits,
the registry server inherits the connections and ensures that
the protocol specified delay period is maintained before the
connection is reused. Resources allocated to the application
and registered with the network I/O module are now reclaimed.
To guard against an abnormal application termination, the
protocol server issues a reset message to the remote peer.

While it is the case that the privileged server performs

certain necessary operations on behalf of the user application,
better performance may be achieved by avoiding the server
on all network transmission and reception. With this rationale,
we explored organizations that were different from earlier
user-level protocol implementations that used a server as an
intermediary.

1. Protection Issues: If one is willing to trust applications,
a simple structure is possible: the network device module

exports read and write RPC interfaces that the application li-
braries invoke to transfer packets to and from the network. One

might argue that since networks are easily tappable, trusting
applications in this manner is not a cause for undue concern.
However, this scheme provides markedly lower security than
what conventional operating systems provide and what users

have come to expect. In contrast, our scheme provides good
security (no scheme can be completely secure without suitable
encryption on the network) without sacrificing performance.

There are two aspects to protection. First, only entities that
are authorized to communicate with each other should be
able to communicate. Second, entities should not be able to
impersonate others. Our scheme achieves the first objective by

ensuring that applications negotiate connection setup through

the trusted registry server. Whhout going through this process,
libraries have no send (or receive) capability for the network.
Impersonation is prevented by associating a header template
with a send capability. When the network I/O module receives
packets to be transmitted, it matches fields in the template
against the packet header. Similarly, unauthorized access to
incoming packets is prevented because the registry server
activates the address demultiplexing mechanism as part of the
connection establishment phase.

The checks required for header matching on outgoing pack-
ets are similar to those needed for address demultiplexing on
incoming network packets. Since our host-network controllers
do not provide any hardware support for this, the logic required
for this needs to be synthesized (or compiled) into the network
1/0 module. Usually, this code segment is quite short. Our
scheme has the defect that it violates strict layering-the lower
level network layer manipulates higher level protocol layers.
We regard this as an acceptable cost for the benefit it provides.

In a typical local area environment, network eavesdropping
and tapping are usually possible. Our scheme, like other

schemes that do not use some form of encryption, does
not provide absolute guarantees on unauthorized accesses or
impersonation. However, our scheme can be augmented with
encryption in the network 1/0 module if additional security
is required.

In our current implementation, the header template is stat-
ically determined and installed at comection establishment.
Subsequently, rerouting of packets from a connection might
require changes to the template to be done on the fly. We
have not implemented this functionality yet.

2. Packet Demultiplexing Issues: We described earlier the
notion of the BQI that is provided by the host-network
controller for demultiplexing incoming data. To summarize,
the AN 1 link header contains an index into a table that
describes the eventual destination of the packet in a (higher-
level) protocol independent way. BQI zero is the default used

by the controller and refers to protected memory within the
kernel. To use the hardware packet demultiplexing facility for

user-level data transfer, nonzero BQI’s have to be exchanged
between the two parties. In our case, the server performs this
function as part of the TCP thee-way handshake.

Before initiating connection the server requests the network
1/0 module for a BQI that the remote node can use. It
then inserts the BQI into an unused field in the AN 1 link

header which is extracted by the remote server. The remote
server, as part of setting the template with the network I/O
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module, specifies the BQ1 to be used on outgoing packets.
Subsequent packets have the BQI field set correctly in their
link-level header. Since the handshake is three-way, both sides
have a chance to receive and send BQI’s before starting data
exchanges. After BQ1’s have been exchanged at call setup
time, all packets for that connection are transferred to host
buffers in the ring for that BQI.

As mentioned previously, in the case of the Ethernet,
which has no BQI, demultiplexing is done in software. The
current implementation of our software does not demultiplex
fragmented 1P packets because these packets do not contain
identifying TCP information. In practice, this has not been a
problem because TCP implementations generally try to avoid
the cost of 1P fragmentation by using fragments that fit within

a network frame.

E. Tradeoffs in User-Le\el Protocol implementations

1, Connection lmpersonution: Implementing protocols at
user-level could potentially compromise the security of
connections. For example, without kernel mediation, a
malicious (or buggy ) application could masquerade as another
application by sending network packets with suitable transport
headers. Similarly, an application can potentially receive
network packets destined for another. However, as our design

demonstrates, it is possible to guard against these security
breaches by using a small amount of code in the kernel on
incoming and outgoing paths. In essence, there is a kernel
sanity check on each network transmission and reception. The
overhead incurred can be kept very modest by combining the
checking code with the code for programming the network
device.

2. I/ate Conlro/: Another potential danger with user-level
protocol implementations is that a malicious application could

jam the network with data, or exceed pre-amnged rate limi-
tations. While we have not implemented a safeguard against
this, we believe it is possible do so. In our current imple-
mentation, the kernel is able to efficiently identify outbound
network packets with specific connections to perform checks
against impersonation. These sanity checks can be conceivably
augmented to enforce rate requirements as well.

In summary, by providing an efficient way of performing
checks on outgoing packets. our design addresses many of the
security concerns inherent in user-level protocol implemen-

tations. However, there are some types of behavior that are
difficult to control with user-level protocol implementations.
For example, there is no easy way to prevent the application
from violating some aspect of the protocol it is supposed to
be obeying.

3. Shared Connections: Sharing a common communication

channel between one or more untrusted applications is a
service provided by protocol implementations in most oper-
ating systems. The sharing semantics are typically not part of
the protocol specification but are specified by the operating
system. As a specific example, by encapsulating connections
into sockets that can be shared across a fbrk system call,
UNIX provides a convenient way of sharing and inheriting
connections between applications. With user-level protocol

TABLE I
IMPACTOF OUR MECHANISMSON THROUGHPUT

System Throughput (Mb/s)
User-to-User Standalone Percentage

DECstation 5000/200 8.5 9.6 83%

implementations, ensuring the integrity of state shared by two
applications becomes cumbersome because the state cannot

be maintained by the untrusted user library. As a specific
example, in our case, considerable programming effort would
have been required to support the sharing semantics of sockets
by migrating shared connection state to a trusted agent.

IV. PERFORMANCE

This section compares the performance of our design with
monolithic (in-kernel and single-server) implementations. Our

goal was to ensure that our design is competitive with kemel-
level implementations or the Mach single-server implemen-
tation, and therefore superior to a user-level implementation
that uses intermediary servers.

Our hardware environment consists of two DECstation
5000/200 (25 MHz R3000 CPU’s) workstations connected to a
10 Mb/s Ethernet, as well as to a switchless, private segment
of a 100 Mb/s AN 1 network.

In order to generate accurate measurements of elapsed time,
we used a real-time clock that is part of the AN I controller,

This clock ticks at the rate of 40 ns and can be read by
user processes by mapping and accessing a device memory
location.

A. Impact of Mechanisms

First, we wanted to estimate the cost imposed by our mech-
anisms (shared memory, library-device signaling, protection

checking in the kernel, software template matching, etc. ) on the
overall throughput of data transfer. To estimate this overhead,
we ran a micro-benchmark that used two applications to

exchange data over the 10 Mb/s Ethernet, without using any
higher-level protocols. All the standard mechanisms that we
provide (including the library-kernel signaling) are exercised
in this experiment. (A complete protocol implementation in
our design will have lower throughput than our benchmark.
This can be attributed to two factors—inherent protocol im-
plementation inefficiency, and the overheads introduced by

using multiple threads, context switching, synchronization, and
timers, )

Table I gives the measured absolute throughputs using
maximum-sized Ethernet packets. For comparison, it also
shows throughput as a percentage of the maximum achievable
using the raw hardware with a standalone program and no op-
erating system. (Note that the standalone system measurement
represents link saturation when the Ethernet frame format and
inter-packet gaps are accounted for. ) Our measurements show

that our mechanisms introduce only very modest overhead in
return for their considerable benefits.

B. Throughput

Next, we compare the performance of our library with two
monolithic protocol implementations. The systems we use
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TABLE II
THROUGHPUTMEASUREF.iENTS(IN MECABITSiS)

Throughput (Mb/s)

Packet Size (bytes~System User I
512 1024 2048 4096

Ethernet
UItnx 4,2A 5.8 7.6 7.6 7.6

Mach 3.O/UX (mapped) 2.1 2.5 3.2 3.5

Our (Mach) Implementation 4.3 4.6 4.8 5.0

DEC SRC AN1

uhix 4.2A 4.8 10.2 11.9 11.9

Our (Mach) Implementation 6.7 8.1 9.4 11.9

for comparison are Ultrix 4.2A, and Mach (version MK74)
with the UNIX server (version UX36). We did not alter the
Ulrnx 4.2A kernel in any way except to add the AN1 driver.
This driver does not currently implement the nonzero BQI
functions that we described earlier and uses only BQI zero to

transfer data from the network to protected kernel buffers. We
did not alter either the stock Mach kernel or the UX server

significantly. The main changes we made were restricted to
adding a driver for our AN 1 network device and appropriate
memory and signaling support for the buffer layer.

The hardware platforms for the three systems are identi-
cal—DECstation 5000/200’s connected to Ethernet and DEC
SRC AN 1. Our implementation of the protocol stack has
not exploited any special techniques for speeding up TCP

such as integrating the checksum with a data copy. The
implementations we compare our design with also do not

exploit any of these techniques. In fact, the protocol stack

that is executed is nearly identical in all three systems. All
three systems use TCP windows of 16 Kbytes. Thus, this is
an “apples to apples” comparison: any performance difference
is due to the structure and mechanisms provided in the three
systems.

The primary performance metric for a byte-stream protocol
like TCP is throughput. Table II indicates the relative per-

formance of the implementations. Throughput was measured
between user-level programs running on otherwise idle work-
stations and unloaded networks. In each case the user-level
programs were running on identical systems. The user-level
program itself is identical except for the libraries that it was
linked against. We repotl the performance for several different
user-level packet sizes. User packet size has an impact on the
throughput in two ways. First, network efficiency improves
with increased packet size up to the maximum allowable on the
link, and thus we see increasing throughput with packet size.

Second, user packet sizes beyond the link-imposed maximum
will require multiple network packet transmissions for each

packet. This effect influences overall performance depending
on the relative locations of the application, the protocol
implementation, and the device driver, and the relative costs

of switching among these kseations.
Table II has two interesting aspects to it. First, the user-level

library implementation outperfomns the monolithic Mach/UX

implementation. Our implementation is 42’% faster than the
Mach/UX implementation for the 4K packet case (and even

faster for smaller packet sizes). The protocol stack and the base

operating system’s support for threads and synchronization are

the same in the two systems, indicating that our structure has

clear performance advantages. For instance, crossing between
the application and the protocol code can be made cheaper,
because the sanity checks involved in a trap can be simplified.
Similarly, a kernel crossing to access the network device can
be made fast because it is a specialized entry point.

Another interesting point in Table H is the performance
difference between the Ultrix-based version and the two Mach-
based versions. For example, Ultrix on Ethernet is 35-65%

faster than our implementation. However, on AN 1, the differ-

ence is far less pronounced. We instrumented the Ultrix kernel
and our Mach-based implementation to better understand the
differences between the two systems.

Our measurements indicate that, under load, there is con-
siderable difference in the execution time of the code that
delivers packets from the network to the protocol layer in
the two implementations. The code path consists primarily of
low-level, interrupt driven, device management code in both

systems. Our implementation also contains code to signal the
user thread as well as special packet demultiplexing code for
the Ethernet that is not present in Ultrix.

To summarize our measurements, the times to deliver AN 1
packets to the protocol code in Ultrix and in our implemen-
tation are comparable. This is not very surprising because the
device driver code is basically the same in the two systems
and there is no special packet filter code to be invoked for
input packet demultiplexing since it is done in hardware. The
only difference between the device drivers is that our imple-
mentation uses nonzero BQI’s while Ultrix uses BQI zero.

The user level signaling code does not add significantly to the
overall time because network packet batching is very effective.
The TCP/IP protocol code in Ultrix and our implementation
are nearly identical and hence the overall performance is
comparable in the two systems.

In contrast, the time to deliver maximum-sized Ethernet
packets to our user-level protocol code is about 0.8 ms greater

than in Ultrix. Under load, this time difference increases due
to increased queueing delays as packets arrive at the device

and awai, $ervice. In addition to the increased queueing delay,
fewer network packets are batched to the user per semaphore
notification. However, we don’t view this as an insurmountable
problem with user-level library implementations of protocols.
Some of this performance can be won back by a better im-
plementation of synchronization primitives, user level threads,
and protocol stacks. For instance, the implementation in [15]
achieves a higher throughput than the Ultrix version.

The observed throughput on AN1 is lower than the max-

imum the network can support. The primary reason for this
is that we have configured the AN 1 driver to use the default
packet size of 1500 bytes instead of larger packet sizes that
the driver is capable of supporting. In effect, TCP/IP sees
the same maximum transmission unit (MTU) on AN 1 as it
does on Ethernet. We achieve better performance than Ultrix
with 512-byte user packets because our implementation uses

a buffer organization that eliminates byte copying. Ultrix uses
an identical mechanism, but it is invoked only when the user
packet size is 1024 bytes or larger.
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TABLE 111
RCIUNDTRIP LATENCIES(IN MS)

Round-Trip Time (ins)

System User Packet Size (bytes)

I 512 1460
Ethernet

Ukrix 4.2A 1.6 3.5 6.2
Mach 3.O/tJX (mapped) 7.8 10.8 16.0
Our (Mach) Implementation 2,8 5.2 9.9
DEC SRC AN1

TABLE IV
CONNECTIONSETUP COST (IN MS)

System
Connection Setup

Time (MS)

Ultrix 4.2A
Ethernet 2.6

DEC SRC AN 1 2.9

Mach 3.O/UX
Ethernet (mapped) 6.8

Our (Mach) Implementation

Ultrix 4.2A 1.8 2.7 3,2 Ethernet 11.9

Our (Mach) implementation 2,7 3,4 4,7 DEC SRC AN I 12.3

Unlike the mapped Ethernet device, standard Mach does
not currently support a mapped AN I driver. Measuring native

Mach/UX TCP performance using our unmapped, in-kernel
AN I driver is likely to be an unfair indicator of Mach/UX per-
formance. We therefore do not report Mach/UX performance
on AN1.

C. Lutency

We compared the latency characteristics of our implemen-

tation with the monolithic versions. The latency is measured
by doing a simple ping-ping test between two applications.
The first application sends data to the second, which in turn,
sends the same amount of data back. The average round-trip
time for the exchange with various data sizes is shown in
Table III. This does not include connection setup time, which
is separately accounted for below. As the table indicates,
Iatencies on the Ethernet are significantly reduced from the

Mach/UX monolithic implementation and approach those of

the Ultrix implementation. On the AN 1, the difference between
Ultrix and our implementation is also fairly small.

D. Connection Se(up Cost

In addition to throughput and latency measurements, an-
other useful measure of performance is the connection setup
time. Connection setup time is important for applications
that periodically open connections to peers and send small
amounts of data before closing the connection. In a kernel
implementation of TCP, connection setup time is primarily the

time to complete the three-way handshake. However, in our
design, the time to set up a connection is likely to be greater
because of the additional actions that the registry server must
perform. Anticipating this effect, our implementation overlaps
much of this with packet transmission.

In measuring TCP connection setup time, we assumed that

the passive peer was already listening for connections when
the active connection was initiated.

Table IV indicates the connection setup time of the different

systems. The speed of the network is not a factor in the
total time because the amount of data exchanged during
connection setup is insignificant. As the table indicates, our
design introduces a noticeable cost for connection setup but it
is a reasonable overhead if it can be amortized over multiple
subsequent data exchanges. The connection setup time is
slightly higher for the AN I because the machinery involved

to set up the BQ1 has to be exercised,

The 11.9 ms overhead in our Ethernet implementation can
be roughly broken down as follows.

1)

2)

3)

4)

5)

The time to get to the remote peer and back is the bulk
of tbe cost (4.6 ins). Network transmission time is not a
factor because it is on the order of 100 ps or so. Most
of the overhead is local and includes the server’s cost
of accessing the network device. Unlike the protocol
library, the registry server dces not access the network
device using shared memory, but instead uses standard

Mach IPC’S.
There is a part of the outbound processing that cannot

be overlapped with data transmission. This includes
allocating connection identifiers, executing the start of
the connection set up phase, etc., and accounts for about
1.5 ms.
Nearly 3.4 ms are spent in setting up user channels to
the network device when the connection set up is being
completed.
The time to go from the application to the server and

back is about 900 ILS,and is relatively modest.
Finally, it takes about 1.4 ms to transfer and set up TCP
state to user level.

There are obvious ways of reducing the overhead that we did

not pursue. For example, having a more efficient path between
the registry server and the device and using shared memory to
transfer the protocol state between the server and the protocol
library is likely to reduce overhead. Nonetheless, it is unlikely
ever to be as low as the Ultrix implementation.

E, Packet Dernultiplexing Tradeoffs

Finally, we quantify the cost/benefit tradeoff of hardware
support for demultiplexing incoming packets. Table V in-
dicates the execution time for demultiplexing an incoming
packet with and without hardware support. For the Ethernet,
programmed 1/0 is used to transfer the packet to host memory
from the controller, and input packet demultiplexing is done

entirely in software. On the AN 1, DMA is used to transfer the
data and the BQI acts as the demultiplexing field.

Table V represents only the cost of software/hardware
packet demultiplexing; copy and DMA costs are not included.
The cost of device management code inherent to packet
demultiplexing in the case of the AN I is included. As the
table indicates, there is no significant difference in the timing.
The AN 1 host-network interface has more complex machinery
to handle multiplexing. Part of the cost of programming
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TABLE V
HARDWARE60FWARE DEMULTtPLEXtNGTRADEOFFS

Network Interface Demultiplexing Coat @s)
Lance Ethernet (Software) 52
ANI (Hardware BQ1) 50

this machinery and bookkeeping accounts for the observed
times. As packet size increases, the tradeoff between the two
schemes becomes more complex depending on the details of
the memory system (e.g., the presence of snooping caches)
and specifics of the protocols (e.g., can the checksum be done
in hardware). For example, if hardware checksum alone is
sufficient, and the cache system supports efficient DMA by
1/0 devices, we expect the BQI scheme to have a significant
performance advantage over one that uses only software.

F. Summary

In summary, our performance data suggests that it is pos-
sible to structure protocols as libraries without sacrificing
throughput relative to monolithic organizations. Given the
right mechanisms in the base operating system, user-level
implementations can be competitive with monolithic imple-
mentations of identical protocols. Further, techniques that
exploit application-specific knowledge that are difficult to
apply in dedicated server and in-kernel organizations now
become easier to apply. A relatively expensive connection
setup is needed, but in practice a single setup is amortized
across many data transfer operations.

V. CONCLUSIONS AND FUTURE WORK

We have described a new organization for structuring pro-

tocol implementations at user-level. The feature of this organ-
ization that distinguishes it from earlier work is that it avoids

a centralized server, achieving good performance without
compromising security. The motivation for choosing a user-
level library implementation over an in-kernel implementation
is that it is easier to maintain and debug, and can potentially
exploit application-specific knowledge for performance. Soft-
ware maintenance and other software engineering issues are
likely to be increasing concerns in the future when diverse
protocols are developed for special purpose needs.

Based on our experience with implementing protocols on
Mach, we believe that complex, connection-oriented, reli-
able protocols can be implemented outside the kernel using
the facilities provided by contemporary operating systems
in addition to simple support for input demultiplexing. In-
kemel techniques to simplify layering overheads and context
switching overheads continue to be applicable even at user-
level.

Our organization is demonstrably beneficial for connection-
oriented protocols. For connectionless protocols, the answer is
less clear. ~pical request-response protocols do not require

an initial connection setup, yet tequire authorized connection
identifiers to be used. However, these protocols are often used
in an overall context that has a connection setup (or address
binding) phase, e.g., in an RPC system. In these cases, after the
address binding phase, the dedicated server can be bypassed,

reducing overall latency which is the important performance
factor in such protocols.

A similar observation applies to hardware packet demulti-
plexing mechanisms as well. To fully exploit the benefits of
the BQI scheme, indexes have to be exchanged between the

peers. This is easy if comection setup (as in TCP) or binding
(as in RPC) is performed prior to normal data transfer. In

other cases, the hardware packet demultiplexing mechanism
is difficult to exploit because there is no separate connection
setup phase that can negotiate the BQI’s.

There is much evidence to support the claim that applA-
cation-specific knowledge can be exploited to achieve highly
efficient communication. For example, [1], [10] are some
of the more recent systems that use application-specific
knowledge to generate communication protocols. By providing
language-level support for generating protocols, these systems

go beyond providing a set of pre-defined options to fine tune a
protocol. In contrast to traditional organizations, the protocol
structuring framework described in this paper is well suited to
support these more aggressive, compiler driven techniques.
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