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Abstract— Purpose-driven, self-growing networks are a novel
concept using their service or geographical extend to augment
network capacity or operational constrains such as energy
consumption. This paper builds upon the purpose-driven, self-
growing paradigm: it contributes a first step towards a frame-
work allowing a formal description and performance evaluation
of such novel network functionality. The paper hereby shows
how purpose-driven, self-growing networks can be described by
their network lifecycle. The latter is decomposed into transition
points and associated parameters, rules for transition between
points, and associated costs. By applying backward reasoning,
the paper contributes a mathematical description of the lifecycle
and presents first ideas how such representation can be used for
network optimization.

I. INTRODUCTION

Various heterogeneous technologies will constitute the fu-
ture of wireless networks. Such networks will provide cov-
erage from femto-cells up to wide are coverage, will utilize
licensed and unlicensed frequencies, will explore available
white spaces in the spectrum, will have to support mobile and
fixed devices, and will integrate single hop communication
(on the wireless link) in addition to multi-hop relaying. In
surplus, networks may potentially serve different purposes
ranging from providing low bandwidth environmental sensing
services, up to high bandwidth multimedia communication
services. This potpourri raises several challenges for future
wireless networks:

• How to improve the efficiency and sustainability of those
coexisting networks?

• How to handle the increased complexity in network
operation and management arising with the variety of
coexisting technologies and network components?

The novel concept of purpose-driven, self-growing net-
working [1], [2] addresses those challenges. A self-growing
network coexists, collaborates or integrates—potentially in
symbiosis—with collocated networks utilizing their service
or geographical extend to augment network capacity, or op-
erational constrains such as energy consumption [3]. The
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self-growing process including network operation and man-
agement is realized by focused cognitive decision making
controlling network and node reconfiguration. Depending on
the ability of its network components, a self-growing network
can autonomously and on demand switch between dedicated,
generally pre-defined purposes. Examples for such purposes
are providing sensing functionality (i.e. obtaining temperature
and humidity information, usage of a given radio spectrum,
general data forwarding within wireless sensor networks) or
providing high bandwidth, low latency user communication.
A cognitive engine associates the change in purpose along
with providing a new or additional purpose with cost and
benefit, such as projected energy consumption and remaining
network or node lifetime. This allows to decide in advance on a
change in purpose under operational (e.g. energy consumption)
constrains as well as on the optimization of network efficiency
and coexistence needed in consequence. As in addition to (hu-
man) management interaction, switching can be triggered by
external events. Such event can include the indication of new
QoS needs by user devices, or distributed sensors reporting
on the network status and energy consumption of devices.
Appropriate rule sets located within the decision engine can
substantially increase the efficiency and sustainability of the
network while reducing operation and management overhead.

In summary, a self-growing network utilizes state-of-the-
art concepts and enablers to realize its evolution. Such facil-
itators include node and network reconfigurability, cognitive
decision-making, and self-learning capacity. At the same time,
a self-growing network can respond to exceptional operating
conditions by applying these concepts and enablers to define a
temporary purpose satisfying demands arising from the excep-
tional situation. A self-growing (derived from progressing to
maturity) network thus can be seen as a managed autonomous
network guided (from educating or raising) in its evolution by
bounding rules. It is assumed, and has to be proven in specific
scenarios, that this approach is more suitable for low-profile,
resource-limited node and network architectures compared to
envisaged full autonomic network solutions.

Hence, the self-growing paradigm evolves the state of the
art as it incorporates both cooperative and autonomic aspects.



Cooperative behavior and problem solving is critical in the
initial phase of self-growing, that is the small-scale network, as
well as in the evolution to a larger scale network, able to serve
different purposes of larger systems. Autonomic behavior is
critical in the self-growing process where it drives decisions
wether to join or leave cooperations.

In contrast to existing approaches for autonomous, self-
configuring, or self-managing networks [4]–[8], a self-growing
network progresses along some rules of evolution along its
lifecycle, following, for example, a predetermined progression
from purposes requiring a lower level of complexity towards
purposes requiring a higher level of complexity regarding
reconfiguration and collaboration capacities. Thus, a self-
growing network cannot freely evolve but is restricted towards
an intended purpose and is driven by cost and benefit of a
transition in purposes. Nevertheless, the degree of freedom to
deviate from a planned lifecycle is a matter of the purpose
of a self-growing network. In this scope, the optimal balance
between the autonomic and cooperative paradigms may be
different according to the purpose of the self-growing network.
This will be reflected in the rules that govern the evolution
of the network, favoring (and motivating) varying degrees of
cooperation between the network elements.

This paper builds upon the concept of purpose-driven, self-
growing networks and contributes a first approach on how to
describe policies, rules, and decision making strategies.

II. PURPOSE-DRIVEN, SELF-GROWING NETWORKS

A. Self-Growing via Cognition

In technical terms, cognitive decision-making is generally
understood as mimicking a human-like complex mental de-
cision process. Implementations often rely on incremental
and recursive reasoning and on inference processes closely
associated with machine-learning strategies to refine rulesets
and to resolve conflicts [9], [10]. Without restricting generality
as well as potential implementation approaches, we here
assume that decision-making for self-growing networks can
be described by a set of rules that, when evaluated by one
or more decision engines, can produce a choice from a set
of potentially new purposes and ways to evolve. Within the
architecture described, the decision engines realize the self-
growing functionality of the network, while the rule sets avail-
able to decision-making describe the self-growing network’s
lifecycle. The latter may even be partitioned in parts describing
characteristic evolvements of the system.

Giving one example, such (part of the) lifecycle may
describe how a self-growing network evolves from a loosely
coupled collection of independent networks that federate dur-
ing the initial phase of operations forming a collaborative
system by progressing through various states of integration.
Sensor networks, femto- and macro-cels of different operators,
and energy-constrained portable devices may join across an
infrastructure network. As a result, the infrastructure network
gains from utilizing portable devices and sensor network
services as remote probes providing measurements allowing

an optimization of the overall network’s capacity or energy
consumption.

B. Decomposition of Lifecycle

The network’s lifecycle encompasses a self-determined or
pre-planned path along a sequence of progression points that
define (potentially temporary) stable points in the evolution of
a self-growing network. Progression points can be associated
with stable configurations of a network potentially providing
different functionalities for a certain purpose of the network;
the transition between them is described via rules. A lifecycle
is defined as having one well-defined starting point and one
or more potential end-points, as well as an arbitrary number
of intermediate points, each of them defined by a progression
point.

1) Progression Points & Attributes: Within the lifecycle,
a progression point associates with a set of attributes. These
attributes are described each by a non-empty set of parameters.
A progression point is defined as being measureable if a set of
metrics is made available for these parameters. An associated
descriptive set of factors (i.e., values of parameters) then
makes a progression point well defined. Since the transition
from one progression point to the next along the lifecycle is
measurable due to the change of parameters, it also implicitly
describes the benefit (or cost) obtained from an evolutionary
step as well as how well a network currently suits a given
purpose.

Figure 1 shows a sample lifecycle comprising a sequence
of progression points (A, B,C, D, G,H, I, K), transient pro-
gression points (A.1, A.2), and exceptional progression points
(E,E.1, E.2).1 Figure 2 illustrates for two progression and
two transient points how the they are described by sets of
parameters and their parameters.

In addition to linear progression, for a number of scenarios,
a lifecycle may fork towards multiple potential target purposes.
This is especially true for event-triggered progressions, where
the type of the event determines the next purpose to enter
(e.g., indication of limited battery power at mobile devices
in conjunction with indicating an emergency situation). In
this, the number of optional targets must be evaluated and all
of them must be assessed and judged against the objective
of the evolution. For example, a near term decision might
have an impact on some long-term capacity, and the rele-
vance of being able to realize a future configuration shall be
judged against a short-term benefit. Certain progression points
which are under ”normal” operation not valid due to energy-
constrained operation and limited battery power might become
well feasible options for changes in network purposes due
to an indicated emergency situation: short-term availability of
”perfect communication” of all users might precedence the
goal of achieving an extended network life-time.

1Note, that the lifecycle diagram as drawn in Figure 1 intentionally
resembles a state diagram, emphasizing that a sequence in time of progression
points also may be understood as a sequence of network configuration states.
In this diagram, initial, final, and exceptional states, such as those representing
transient progression points, are marked by double outlined circles.



Fig. 1. Lifecycle example for a self-growing network.

Fig. 2. Evolution between progression points of a self-growing network and
associated benefit.

Such possible transitions are expressed by rules. The pa-
rameters associated with progression points may be used for
deriving a metric which allows for such an evaluation showing
if the network residing at a given progression point better suits
its purpose (e.g. guaranteeing a minimal quality of service).

2) Rules Governing the Transition between Progression
Points: How a self-growing network evolves between pro-
gression points shall be defined by suitable rules. Hence, the
evolution of a self-growing network through its lifecycle can
be described by a non-empty set of rules. Applying a rule may
cause a change in attributes or parameters when commuting
between progression points. The benefit of applying a certain
rule is measurable, given that both the starting point and the
endpoint of a transition between progression points are well-
defined and are measurable. Rules might be static (e.g., known
a-priori), volatile or dynamic (e.g., computed), or persistent
(e.g., self-learned).

Backward reasoning is applied as a suitable mathematical

Fig. 3. Top-level rules for the lifecycle example given in Figure 1 highlighting
decision points.

inference method to describe the progression options of a self-
growing network. Figure 3 provides an example for the top-
level rules of the lifecycle example shown in Figure 2. Note
that in an inference engine implementation, firing a rule in
a timely manner implicitly requires an external trigger, or
programmed request not shown here, except for transitional
progression points which are assumed to be self-triggered.

Accordingly, B ∧ Event → E here should be read as
a conclusion: if B and Event then E. This implies that
there exists a function that realizes the reconfiguration of the
network into a configuration here described by E if it currently
is in a configuration described by B, and an Event is detected
and notified by some external function out of scope for this
discussion.

Consequently, the cost (or price, or net utility, depending
on the mathematical method to describe the effort required)
to achieve this reconfiguration is herein denoted as cost(B ∧
Event → E) assuming some cost function that relies on
externally defined metrics associated with parameters. This
expression is synonymously used also as the cost of applying
the corresponding rule, which allows comparing on the cost
of certain alternatives in reconfiguring the network and may
hence be used for optimizing the network configuration for a
given purpose under cost constraints.

Figure 2 illustrates how attributes and parameters cor-
respond between different well-defined progression points,
and how the benefit of changing between purposes can be
measured by factorizing parameters of an attribute set and
applying common metrics to parameters.

C. Network Optimization

The sequence of progression points defines the lifecycle
of a self-growing network and the set of rules defines how
it evolves through this lifecycle. In that, a well-defined and
measurable progression point might associate with a dedicated
purpose of the network. This property of a self-growing
network thus allows factorizing the transition between dis-
tinct purposes of the network. Accordingly, to compare the
values of metrics associated with adjacent progression points
provides a way to define and measure the cost or benefit of
a transition between purposes. The system can be extended
to support mapping and evaluation between attributes with



different weights using properly designed rules. Fuzzy logic
modeling can potentially facilitate this process since it is
well suited for capturing complex non-boolean requirements.
Metric comparison can also be interpreted as a way to evaluate
a given rule set in terms of cost and benefit. Given that
parameters may have multiple metrics, and given that a metric
may apply to one or several parameters at a time, the approach
is sufficiently flexible to enable the evaluation of the benefit
of a certain network configuration at any time in the lifecycle
of a self-growing network.

Clearly, the benefit of a purpose change cannot be de-
termined for attributes that cannot be parameterized (e.g.,
Attribute 4 in Figure 2), if there exists no metric for a
parameter, or if metrics exist but are not comparable between
purposes. Simply speaking, a ”before/after” comparison and
a categorization in terms of ”is more than” or ”is less than”
must be possible to measure the benefit. It is not necessary that
parameters must have numerical factors in this. Measurability
and comparability—potentially applying transformations to
achieve comparability across different metrics—are sufficient,
which can be achieved by an initial classification or fuzzifica-
tion step.

It must be noted here that a progression point might be
transient (i.e., is not a well-defined purpose). Under certain
conditions the set of attributes describing a progression point
cannot be associated with parameters (i.e., a progression
point has a non-empty set of attributes and an empty set
of parameters). Although such a transient progression point
might be needed as an intermediate to commute between two
well-defined progression points (e.g., to describe the transition
through an unstable state with, potentially, zero-time to cross),
it is not wise to consider them as a valid (temporary) network
configuration. This is due to the problem of determining cost
or benefit of approaching or leaving a transient progression
point. In order to consider such transient points in the opti-
mization process, it may be feasible to associate a local set of
attributes with a transient progression point, or with a sequence
of transient progression points, which are only meaningful
within a local context (c.f. Figure 2 and progression points
A.1 and A.2 for an example).

This can be useful to describe transient network states where
optimization takes place aside the main scope (e.g., in the
scope of a neighboring network), resulting in an optimization
within the main scope as a benefit for a cooperating network.
Hence, the cost or benefit of progressing from a purpose to
a transient progression point or vice-versa might still not be
ascertainable, or might be meaningful only in the local context
of the transient progression point(s). But the cost or benefit for
progressing across a transient phase can be determined (c.f.
Figure 2 and Figure 3 with respect to the transitions between
A and B as well as B to E and E to C or D).

On the other hand, a transient progression point can be
used to commute between contexts. That is, the cost or benefit
for crossing transient progression points cannot be determined
(e.g., due to a lack of comparability), but entering and leaving
the transient phase both might be meaningful as the cost or

benefit of leaving an initial context and entering a new context,
although this might be expressed in terms of different factors
and metrics (and might require human interpretation).

This illustrates how the cost of recovering from a recon-
figuration necessary to handle an event in the near term
has an impact on the benefit of a planned target purpose
in the long-term (possibly affecting even the reachability of
one of the pre-planned progression points) and hence on the
optimization process. Resources consumed during an event
then may require a different decision to optimize for the target
purpose of a self-growing network. A potential approach to
revise the networks lifecycle in a suitable way accordingly
could be (among others) used to evaluate the cost of rules
applied (and to estimate the cost of rules that must be applied
in the future to reach the target purpose) and to reach a
new balance between cost and benefit of purposes on the
path towards a target purpose. Given the lifecycle depicted
in Figure 3, the cost of applying a rule is illustrated as
cost(A → B) to attain a new purpose B inferred from a
purpose A under some external triggers, facts and conditions.

Considering the examples given previously, we can formal-
ize the additional cost of handling an event by the network:

cost(Event ∧Recover) = cost(E ∧Recover → D) +
+cost(B ∧ Event→ E) +
−cost(B ∧ ¬Event→ D)

while the minimum cost to reach purpose G is

cost(B ∧ ¬Event→ D) + cost(D ∧Decision→ G)

The cost of approaching G and recovering first from the event-
driven reconfiguration is

cost(B∧Event→ E)+cost(E∧Recover∧Decision→ G)

Omitting complete recovery and approaching a matched pur-
pose (that probably only recovers partially since omitting D
and applying C instead, which according to the rules given in
Figure 3 is the only way to reach G without applying Recover)
is

cost(B∧Event→ E)+cost(E∧¬Recover∧Decision→ G)

which might be more beneficial in the long run.
Applying the evaluation method discussed above will al-

low comparing all potential evolutions in terms of cost and
benefit on the basis of distinct attribute changes between
purposes. It illustrates that the cognitive decision engine for
purpose-driven, self-growing networks can feasibly described
by sketching the networks life-cycle, and that such a life-cycle
can easily be decomposed using progression and transient
points in combination with rules (and associated costs) for
each transition.

III. SUMMARY

This paper describes how the concept of ”self-growing
networking” can be identified as a novel type of network
composed of (heterogeneous) network nodes and sub-networks



that can cooperate and utilize their reconfiguration capacity
to optimize on-demand for a dedicated (temporary) purpose,
also augmenting capacity by associating with additional nodes,
networks, services and functions in that. In this sense, the
self-growing can be considered as building on paradigms
such as: autonomicity and self-x capabilities, and cooperation
and collaboration. Self-growing thereby allows to integrate
a potpourri of heterogeneous network nodes to dynamically
adapt to changes in users’ needs and purposes of the network
while optimizing for cost factors such as energy consumption.

The paper has shown that the cognitive decision engine re-
quired for enabling self-growing networking can be expressed
by describing the networks life-cycle. One of the key contri-
butions is the decomposition of this lifecycle into progression
points and rule sets defining the progression between them.
In addition, the paper shows how backward reasoning can be
applied for describing the transition (rules) between progres-
sion points and how those rules can be associated with a cost
function. This actually provides an initial framework for the
purpose specific optimization of a self-growing network over
its lifetime. The intelligence represented by this set of rules
and costs allows an automated optimization of the network’s
configuration and hence highly degrades the remaining effort
for managing and operating the network.

As this work is the first step towards self-growing, purpose
driven networking, upcoming work addresses the following
key challenges: First, a classification of a minimal set of
rules allowing network operation and growing satisfying users’
and providers’ needs is required. This should account for
the possibility that the decision engine’s cognition and self-
learning approaches allow for dynamic evolvement of the
ruleset over the network’s lifetime. Second, approaches how to
test (new) rule sets in a deployed network without influencing
the existing behavior of distributed decision engines is a
key challenge. Also, from a more practical point of view, a
detailed specification of required functional elements within
the network as well as protocols for exchanging rulesets and
input parameters for the decision engine between network
elements are required. Potential candidates for following a
standard compliant approach, requiring the extension of ex-
isting protocols, are combinations of IPfix [11] and the IEEE
1900 protocol family of IEEE DYSPAN [12].
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