Moving towards Seamless Mobility: State of the Art and Emerging Aspects in Standardization Bodies

M. Emmelmann^(*), S. Wiethoelter^(*), A. Koepsel^(*), C. Kappler^(**), and A. Wolisz^(*)

(*) Technical University Berlin (**) Siemens Communications

Special Session: Seamless Handover in Next Generation Wireless/Mobile Networks WPMC 2006, San Diego, CA, USA. September 17 -- 20

Telecommunication Networks Group Technische Universität Berlin

Executive Summary

This presentation summarizes schemes enabling seamless mobility as currently discussed in standardization bodies.

Considered work includes amendments to IEEE 802.11 (TG k and TG r) and IEEE 802.16 (TG e), IEEE 802.21, as well as IETF internet drafts (SEAMOBY, DNA, NETLMM, MONAMI working groups). Aspects to couple 3GPP networks with IP-based network technologies are paraphrased in the end.

The presentation concludes with open issues and challenges towards seamless mobility support.

Copyright (c) 2006 Marc Emmelmann (emmelmann{at}ieee.org)

Networks Group

Generic mobility functions

- Detection of available radio cells
 - Mobile driven detection: active / passive scanning
 - Network assistance: provide (verified) information on available cells
- Criteria for handover decision
 - How to decide: algorithm to decide on transition
 - Acquisition of input for this algorithm
- Re-establishment of link layer connectivity: everything that allows me to exchange user data via the MAC
 - synchronization PHY
 - authentication
 - when to start / stop transmitting packets via which AP

Lower Layer Mobility: IEEE 802.11 & .16

	802.11	802.16
Neighborhood Detection	 Passive Scanning <> influence of TBTT Active Scanning <> High channel load Pilot Frame Neighbor Reports <> selected scanning Scan might interfere with ongoing communication (might "abuse" STA power management modes) 	 → Passive Scanning: SS shall start channel acquisition using parameters of last operational channel → 16e adds continuous network discovery, i.e. SS initiated or BS initiated scanning → Time slots used for scanning either solicited by SS or advertised by BS → Neighborhood report build by BS based on feedback from SSs
L L	Algorithms for Handover not standardized -	neither <i>when</i> nor to <i>which</i> neighbor but,
HO Decisio	 standard provide measurement capability to → Pilot Frame includes TX power and noise floor experienced as sender →Request remote measurements representing BSS state of single STA channel load, noise histogram, location 	 → SS continuously measure signal strength → Report mean / std. derivation via prioritized feedback channel
Link (Re-) Establishment	 → Move authentication and optionally resource negotiation a prior switching the channel via the air via the DS <> RBB introduced (un-)successful negotiation consider in handover decision → Security: additional key hierarchy, and a priori key exchange → Routing path update & transfer of buffered packets (11F status: expired) 	 → Conduct steps to establish a link a prior the handover synchronization (during scanning) obtain transmission parameters adjust power level (ranging) authentication → Association without / with coordination → Network assisted association → SS may hold several associations in parallel → Macro diversity handover & Fast BS switching

TKN

Higher Layer End-to-End Mobility Support

- Semantic Overloading
 - IP Address used for
 - routing purposes (representing the NAP) and for
 - node identification (ID of transport endpoint)
 - Problem: Change of L3 NAP breaks established transport connections
- Well known solutions:
 - Assign additional address representing the NAP
 - --> mobile IP care-of-address
 - Separate namespace to identify host
 - --> Host Identity Protocol (HIP)
 - Decouple stream identifier of transport protocols from IP
 - --> Stream Control Transport Protocol (SCTP)
- Mobility handled at end-host rather than the network
 - Cannot solve all mobility problems (double jump of mobile nodes)
 - Compromise: reduced network complexity vs. signaling load
 - Increased user mobility yields to mobility support of the network

IETF Mobility Support for IP Networks

7

Telecommunication Networks Group

Media Independent Handover Services

- Future situation:
 - Mobile Terminals (MT) equipped with multiple, heterogeneous NICs like 3GPP/3GPP2/802.11/802.16,
 - Simultaneous connectivity to several wireless access networks,
 - Change of access technology during on-going session.
- Requirement: Assistance for Management and Mobility support of
 - mobile terminals and
 - involved wireless access networks:
 - Points of attachments (e.g. AP, RNC),
 - Network management entities.
- Approach: Generic interface on top of Link Layer
 - Information exchange,
 - Control Possibility,
 - Event detection, notification, delivery.
- Media Independence by
 - Generic SAPs between MIHF and higher layers,
 - Enhanced technology-specific SAPs.

WPMC 06--Moving towards Seamless Mobility: State of the Art and Emerging Aspects in Standardization Bodies Copyright (c) 2006 Marc Emmelmann (emmelmann{at}ieee.org) 8

within protocol stack, between MTs and networks.

IEEE 802.21: Media Independent Handover (MIH) Function

- Event Service:
 - Detects and signals that a handover is required,
 - MIH or Link event detection and trigger delivery,
 - From local as well remote MIHFs.
- Command Service:
 - Enables higher layers to control LLC, MAC and PHY,
 - Higher-layer handover Command Set allows link configuration and selection.
- Information Service:
 - Network discovery and information provision of neighbor cells,

9

- Informational support for HOs,
- E.g., geographical conditions, neighbor reports.

How does 3GPP add into this puzzle

Current mobility scheme:

- Offers seamless mobility based on GTP
 - One protocol integrating mobility, QoS, security, charging
 - Mobility only within 3GPP network
- Neighborhood detection
 - MN measures radio conditions
- Handover decision
 - Network decides to add / remove access points
- Reestablishment
 - Network signals on behalf of MN
 - Seamlessness supported by macrodiversity

WPMC 06--Moving towards Seamless Mobility: State of the Art and Emerging Aspects in Standardization Bodies Copyright (c) 2006 Marc Emmelmann (emmelmann{at}ieee.org) 11 **Telecommunication Networks Group**

ΙΚΝ

Challenges / Open Issues

- Mobility support beyond 3g: high data rate, small coverage area, highest velocity
- Upcoming architectures: vehicular & meshed networks
- Interoperability: PPP context transfer between 3GPP and IP networks
- Network vs. terminal controlled mobility
 - How to achieve a compromise between less complex network architecture and network-based mobility support required for seamless handover?
 - Resource optimization / network management in both schemes
 - Freedom of choice to select a network: user vs. operator interest
- Performance evaluation & comparison of different approaches:
 - Network vs. session layer mobility support (mIP -- SIP)
 - Network vs. lower layer approaches (e.g.: NETLMM vs. FBSS in 802.16)
- Security schemes might not optimally support mobility
 - How to improve existing ones
 - Accept mobility as an omnipresent aspect and consider this in the future designs
- Cross-Layer design and optimization:
 - Each abstraction level (i.g. 802.21) steals information.
 What information exchange is needed for further optimization?
 - Analysis of L2 events & triggers
 - Feedback on user specific mobility information
- Predictive handover preparation:
 - True prediction or just an "ahead-notification"
 - Accuracy, cost, complexity of algorithms

Thank's for Your Attention.

WPMC 06--Moving towards Seamless Mobility: State of the Art and Emerging Aspects in Standardization Bodies Copyright (c) 2006 Marc Emmelmann (emmelmann{at}ieee.org) 13

Telecommunication Networks Group

References

 [1] V. Gupta et. al.: *IEEE 802.21 Overview of Standard for Media Independent Handover Services*. IEEE 802 Plenary, San Diego Tuesday, July 18 2006

