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Abstract

This master thesis presents a preliminary investigation into the impact of TCP’s advertised receive buffer
size and timer granularity on TCP performance over an erroneous link in a low earth orbit (LEO) satellite
environment. Conducted simulations include over 200 different combinations of TCP flavor, advertised
receive buffer size, timer granularity, and bit error rates. Results show that TCP can only approximate
the variable propagation delay of the LEO satellite link for unsaturated channels and that the minimum
timer granularity which prevents a premature expiration of the retransmission timeout (RTO) depends on
the advertised receive buffer. Low bit error rates (BERs) do not influence TCP’s capability to track the
variable propagation delay in contrast to high BERs. Final results indicate that the relative performance
degradation of TCP over erroneous LEO satellite links does not depend on the ability to estimate the
variable propagation delay but rather on the employed TCP flavor. [35]

The presented work includes basic principles of TCP with respect to its congestion avoidance and
retransmission mechanisms. Additionally, an introduction to satellite constellations is given and further
detailed to highlight the characteristics of the analyzed satellite network. Based upon this analysis, this
thesis will mathematically show that only the up- and downlink delay dominate within the end-to-end
delay’s variability. Thus, the developed simulation model might neglect any propagation delay associated
with inter-satellite links (ISLs).

In order to simplify the simulation of erroneous satellite links, some aspect of up-to-day data encoding
and forward error correction (FEC) schemes are presented. This work shows that on a transport layer
level, the satellite link reveals either a uniformly distributed BER or is not available at all. [38,39]

As the entire work was conducted within a BMBF-founded research project at Fraunhofer FOKUS,
references to project constrains and system parameters are included whenever necessary. [6]
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Abstrakt

Diese Diplomarbeit betrachtet einleitend die Auswirkungen der Größe des annoncierten Empfangspuffers
(advertised receive buffer) und der Granularität der internen Zeitmessung (timer granularity) von TCP
auf die Leistungsfähigkeit von TCP über eine mit Fehlern behafteten LEO Satellitenverbindung. Die
durchgeführten Simulationen beinhalten über 200 verschiedene Kombinationen aus verschieden TCP
Varianten (flavors), Empfangspuffergrößen, Granularitäten der internen Zeitmessung und Bitfehlerraten
der Satellitenverbindung. Erste Ergebnisse Zeigen, daß TCP die zeitvariante Verzögerung aufgrund
des Satellitenkanals nur für ungesättigteÜbertragungskanäle wiederspiegeln kann. Ebenso zeigt sich,
daß die Granularität mit der die TCP-internen Zeitauflösung mit der eine verfrühte Neuübertragung
von möglicherweise verlorengegangenen Paketen vermieden wird, stark von der annoncierten Emp-
fangspuffergröße abhängt. Niedrige Bitfehlerraten haben keine Auswirkung auf die Fähigkeit von TCP,
die ZeitvariantëUbertragungsverzögerung wiederzuspiegeln. Hingegen verhindern sehr hohe Bitfehler-
raten diese Eigenschaft von TCP. Erste Ergebnisse zeigen, daß sich vor allem die eingesetzten TCP
Varianten auf die Leistungsfähigkeit über einen fehlerbehafteten Satellitenkanal auswirken, wohingegen
die Fähigkeit, die zeitvariantëUbertragungsverzögerung wiederzuspiegeln, nur marginalen Einfluß hat.
[35]

Um den Leser die Möglichkeit zu geben, sich mit für diese Diplomarbeit notwendigen Grundlagen im
Bereich Satellitenkonstellationen und TCP Algorithmen zur Vermeidung von Netzüberlastsituationen
vertraut zu machen, werden beide Themengebiete kurz anhand der Systemspezifikation des zugrun-
deliegenden Satellitennetzes erörtert. Auf dieser Grundlage wird der Leser auf mathematischem Weg
von der LEO Satellitenkonstellation zu einem für die Simulation geeignetem Model der zeitvarianten
Verzögerunszeiten geführt.

Um die Simulationen insbesondere in der Behandlung von auftretendenÜbertragungsfehlern zu vere-
infachen, werden dem Leser zusätzlich Aspekte der aktuellen Datenkodierung und Fehlererkorrektur
(forward error correction schemes) vorgestellt. Auf dieser Basis kann gezeigt werden, daß aus der Sicht
der Transportebene (transport layer), eine uniform verteilte Bitfehlerrate angenommen werden kann. An-
dernfalls steht der Satellitenkanal aufgrund zu hoher Fehlerraten in keinster Weise zur Datenübertragung
bereit. [38,39]

Die vorgestellte Arbeit ist eingebettet in ein Projekt, welches durch das Bundesministerium für Bil-
dung und Forschung, BMBF, gefördert wurde. Die Durchführung erfolgte am Fraunhoferinstitut für
Offenen Kommunikationssysteme FOKUS. Referenzen auf projektspezifische Randbedingungen und
Systemparameter sind in der Arbeit an für sie entscheidenden Stellen enthalten. [6]
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1
Introduction

1.1 MOTIVATION

TCP/IP, the protocol suite the internet is based on, is now very widely deployed. Originally designed for
— in today’s terms — rather slow connections providing a good link quality, packet loss is interpreted
as an indication of network congestion and appropriate back-off mechanisms are being taken in order to
prevent further overload. The fact that packet loss due to transmission errors, disclosing to be possibly
bursty, might end up in congestion control back-off strategies, reveals the need for TCP enhancements
when used over satellite links. [18,73]

In a satellite environment, the radio signal — whose strength falls in proportion to the square of
the distance travelled — has to overcome a distance ranging from one thousand up to tens of thousands
kilometers. Besides the energy loss, multi-path distortion and shadowing might weaken the signal before
it reaches the receiver. These effects result — depending on the employed FEC scheme — in rather high
and possibly bursty bit error rates which yield to packet loss. As TCP does always interprets the latter
to be caused by congestion (and not be corruption), there is a strong need to analyze the effects of
satellite networks on TCP in order to highlight ways to possible improve TCP’s performance especially
as terrestrial bound networks will most likely exist in conjunction with satellite based networks or might
even be connected with each others using satellites.

The following paragraphs will show the need for satellite based communication networks and the
differences in between satellite-based and terrestrial communication. Further, some aspects of the current
research related to TCP over satellite networks are highlighted.

1.1.1 The Need for Satellite Based Communication Networks

Satellite communications now form an "integral part of our new ’wired’ world" [5]. The rapid evolution
of mobile and wireless communication has been fueled by the growing demand for mobile information
services and today’s users expect their mobile handset to work "everywhere". Additionally, state-of-the-
art communication devices shall support an increasingly wide range of bandwidth-demanding information
services. Thus, the future growth and development in cellular and land mobile satellite communication
is likely to be driven by the demand for advanced information services over information networks, such
as multimedia via the Internet.

In order to provide these services, future communication networks all over the world, which are
most likely to be geographically separated, will be connected via satellite networks. Besides a satellite’s
native capability to provide broadcast services, it might be the only feasible and cost efficient alternative to

1



2 INTRODUCTION

deploy broad-band multimedia services, especially in rural areas and developing countries.1 Apart from
the traditional "bend-pipe" relay architecture, intelligent satellite techniques, i.e. on-board processing
(OBP) and satellite switching, will improve overall system efficiency and will help enable future land
mobile satellite (LMS) communication services. These concepts may realize a promising view of a
satellite network to consist of "switches in the sky" which in turn will most likely push satellite networks
to act as an independent communication network providing multimedia services. [40]

1.1.2 Differences to Wired Communication Networks

Satellite based communication links are characterized by a rather long and possibly varying propaga-
tion delays, higher bit error rates as compared to a terrestrial network, and more stringent bandwidth
limitations.

A long propagation delay and thus a large round trip time (RTT) have an influence on the buffer
dimensioning at the receiver and sender side in order to allow each communicating partner to utilize the
available bandwidth as efficiently as possible. To achieve this, local buffers should be dimensioned in
the same magnitude as the bandwidth-delay-product.2 As long as the RTT is (somehow) constant, long
propagation delays do not significantly part satellite based networks from terrestrial networks offering a
high bandwidth to their users. This aspect is, at least in the "wired community" well known and discussed
under the term "long-fat pipelines in communication networks". [51] This leaves the focus of further
research on the variability of the RTT and its effects on upper layer protocols.3

In addition to long and possibly variable propagation delays, satellite channels reveal a higher bit
error rate than terrestrial communication paths. BERs encountered may rise up to10−3 and desclose
to be rather bursty for carrier frequencies prone to rain attenuation. Nevertheless, currently available
commercial-of-the-shelf transponders in conjunction with appropriate forward error correction schemes
may reduce BERs up to10−8 with an almost uniform distribution. [20,38,39] With this perspective, the
ITU defines "performance objectives for satellites" to connect back-bone ATM networks in terms of a
cell loss ratio of7.5 · 10−8. [5]

Finally, the available link capacity might divide a satellite based communication system from wired
networks. Besides that the available bandwidth is rather low4, a possible asymmetry might occur if
a satellite systems is only providing a broadband down-link while the up-link is realized via a low
bandwidth dial-up line.

1.1.3 Related Research

Research related to TCP over satellite networks can roughly categorized into those experiments which
propose a change of the TCP protocol in order to distinguish in between congestion and corruption based
loss, solutions which split the end-to-end semantic of TCP in order to "insert" performance enhancing
proxies in the middle of the connection, and those merely analyzing TCP performance over satellite
links by tuning parameters available in standard-conform TCP implementations. Even though this thesis
focuses on the evaluation of RFC conform, widely spread TCP implementations, all three research
categories are briefly referenced.

Samaraweera and Fairhurst [69] propose a fundamental change of TCP in which they include mech-
anisms to explicitly notify the sender of transmission losses. For that purpose, they propose a new
algorithm to gain a more accurate RTO. In contrast, other research rather focus on a modified TCP flavor
which is backward compatible with RFC conform implementations. These proposals include, e.g., TCP-
Peach which uses low-priority dummy segments to discover the available bandwidth. Afterwards, the

1Although the growth of the satellite part on intercontinental telephone connections has been slowed by the installation of new,
optical fiber submarine cables, "satellites continue to carry most of the PSTN traffic between the developed and the developing
world". [5]
2The ITU proposes buffer sizes of0.5 ∗ BDP to achieve a link utilization by TCP of approximately 98%. [5]
3The reader is asked to note that extremely long propagation delays which occur in inter-stellar communication links, are not
included in the "long fat pipe" discussion and might have effects on upper layer protocols which are worth to be studied. As these
effects are rather specific to a space mission, they are not considered within this work.
4Even though modern satellite systems provide links offering several Mbit/s, the available bandwidth of a terrestrial network is
expected to be always at least one magnitude larger.



OBJECTIVES AND SCOPE 3

congestion window (CWND) may be increased or decreased by an addition to the Fast Retransmission
and Fast Recovery Algorithm, namely Sudden Start and Rapid Recovery. [9,10]

From a satellite constellation point of view, literature featuring performance enhancing proxies (or so
called "protocol boosters") put their main emphasis on GEO satellite networks. TCP connections are split
transparently to the user. Data is afterwards forwarded over the satellite link with either (a modified) TCP
or other protocols tuned for long delay, erroneous links. [58] These "boosting" protocols in the middle
include the satellite transport protocol (STP) [57,70] or UDP-based approaches [67]. Ishac and Allman
complement performance enhancing proxy based experiments by including congestion conditions in
their experiments. [48]

The final group contains the evaluation of TCP over satellite channels using standard mechanisms.
[13] As satellite links can somehow be compared to wired networks with a large bandwidth delay product,
work related to TCP extensions over long delay networks (RFC 1072 [51]) belongs as well to the group
of relevant research. Historically, experiments focuses on GEO satellite networks with a rather constant
propagation delay. E.g., the TCP window scale option and the selective acknowledge option (SACK) are
evaluated within this context.5 [29] Further work considered LEO networks with variable propagation
delays. They show that TCP is well able to reflect a variable propagation delay in its RTO [14] and that
TCP based file transfers perform better in a LEO environment than in a GEO based satellite networks.
[30] These experiments utilized only standard TCP settings with respect to the timer granularityG and
advertised window size. Thus, the latter aspects are included in the work presented in this thesis. [34,35]

1.2 OBJECTIVE AND SCOPE

The presented work is embedded in a project carried out be German Aerospace Agency (DLR), Fraunhofer
Institute for Open Communication Systems (FOKUS), and Tesat Spacecom. This project focuses on the
design of a LEO, ATM-based satellite network supporting multimedia traffic. [6,18,19] The evaluation of
widely spread, standard conform TCP implementations is included within this project. These constrains
limited the analysis of TCP to two flavors: Vanilla TCP and TCP Reno. Parameters that are tunable at
the end-system include the buffer size (i.e. the advertised receive buffer) and the timer granularity of
TCP.

In particular, this work focuses on the evaluation of TCP over the specified LEO satellite network
with respect to the following questions:

1. Does reducing the timer granularityG significantly improve TCP performance?

2. Is TCP’s timer capable to reflect a variable link delay?

3. How does the advertised receive buffer size effect TCP’s RTT approximation and performance?

4. How does the target system specific BER effect these aspects?

1.3 OUTLINE OF THE THESIS

The following outline is followed in order to answer the above specified questions:
Chapter 2 introduces the reader to satellite constellations and satellite specific data encoding. Starting

from the definition of Keplerian Orbits, the satellite’s velocity and the orbit period are derived. Addition-
ally, the nomenclature associated with the orientation of an orbit plane is presented. The introduction to
satellite constellations concludes with a detailed look at circular orbits and one special circular satellite
constellation, namely Walker Constellation. Finally, it presents the forward error correction scheme used
within the ATM-Sat project.

Chapter 3 provides an overview on simulation tools for satellite and commercial networks. The reader
has the opportunity to follow the reasoning on why Opnet Modeler was used throughout this study. To
achieve this, other commonly used simulation tools are compared to Opnet. Finally, Opnet’s modeling

5It should be noted that SACK did not result is significant performance enhancements for the experiments presented.



4 INTRODUCTION

concepts are roughly presented to allow the reader to gain a deeper knowledge of the newly developed
simulation models presented in Chapter 5.

Chapter 4 focuses on TCP over satellite based communication networks. Starting with fundamental
knowledge of how the TCP header is structured and which options can be negotiated during connection
setup, the reader is pointed to TCP’s data flow control mechanisms. A deeper understanding of these
mechanisms, especially the sliding window and retransmission concepts including TCP’s internal timer
structure is required to further evaluate the presented simulation results. Due to this requirement, special
emphasis is put on the congestion control and retransmission algorithms, namely slow start, congestion
avoidance, fast retransmit, and fast recovery. The chapter ends with a rather general overview on the
effects of satellite based networks on TCP.

Chapter 5 presents the actual evaluation of TCP over the LEO satellite link specified within the ATM-
Sat project. After placing the work into the context of the ATM-Sat project, an overview on the simulation
workflow is provided. Afterwards, the simulation models are developed, parameter for the simulation
run specified, and the simulation results depicted.

The development of the simulation models is twofold: It starts out with a STK based analysis of the
LEO satellite network in order to gain a propagation delay model which can further be used in Opnet.
Afterwards, the Opnet specific models are explained, i.e. the satellite channel model is developed and
the final simulation model used for TCP evaluations is depicted. The simulation settings specified can
be divided into two major groups: the first simulation group focuses on the verification of the developed
simulation model itself while the second group actually analyzes TCP over the ATM-Sat specific network.
The chapter ends with the presentation and interpretation of the gained simulation results.

Finally, Chapter 6 summarizes this work and reveals some aspects which might be worthwhile to
study in further simulations.

Chapters 2,3, and 4 are independent of each other. Thus, a consecutive reading of each chapter is not
mandatory but recommended in order to follow the main aspect of this work as presented in Chapter 5.
If already familiar with TCP’s congestion control and retransmission algorithms, the reader might skip
Chapter 4. Chapter 2 can be omitted if the reader does not wish to follow the derivation of the satellite
channel model in all its mathematical details.

Additionally, the choice is left to the reader to acquaint himself with mathematical proofs of the applied
formulas to analytically describe Keplerian orbits and the velocity of orbiting satellites (Chapter 2) or with
the interpolation theorem which allows a better reconstruction of the propagation delay function based
on the measured delay samples provided by STK (Chapter 5). These proofs and auxiliary information
are started with the wordLemmawritten in italics and concluded with a bullet (•).

Mathematical proofs requiring more than one page are placed in the appendix. Additional measure-
ment results which do merely support the results gained in this work are placed there. With respect to the
source code of the implemented simulation models, only code manually written by the author is added
to this thesis. C-Code which can easily generated via the graphical interfaces of either used simulation
tool is therefore omitted as it would require several hundreds of pages.

Please note the glossary and index register provided in the back of this work whereas the acronym list
is given at the beginning of this thesis.



2
Introduction to

Satellite Constellations and
Satellite Specific Data Encoding

This chapter shortly introduces basic satellite constellations and data encoding and forward error correc-
tions schemes for satellite systems.

Starting from the Keplerian Laws, the satellite velocity and orbit periods are derived. Later on,
the reader is introduced to basic terminology of the orbit plane’s orientation. Based on this general
introduction, circular orbits are highlighted. The Walker orbit, as a special circular orbit, is presented in
all its details as this constellation is used to derive the satellite channel’s delay characteristics later on.

The second part of this chapter provides a detailed explanation of data encoding and forward error
mechanisms using the example of the FEC scheme applied within theATM-Sat project. Based on this
FEC scheme, the error model which is later on applied to the TCP simulations is presented.

2.1 BASICS OF SATELLITE CONSTELLATIONS

2.1.1 Overview on Satellite Orbits

After the problem of determining the position and path of a satellite in space as a function of time
has occupied scientist for thousands of years, Johannes Kepler discovered some important properties of
planetary motion in the early 17th century. Kepler’s Laws state that:

1. The planets move in a plane; the orbits around the sun are ellipses with the sun at one focal point
(1602).

2. The line between the sun and a planet sweeps out equal areas in equal intervals of time (1605):

r2 dθ

dt
= const. (2.1)

3. The ratio between the square of the orbit periodT and the cube of the semi-major axisa of the
orbit ellipse is the same for all planets (1618):

T 2

a3
= const. (2.2)

It remained for Isaac Newton’s discovery of the Universal Law of Gravitation (1667) to identify the
forces associated with Kepler’s Laws. Specifically, every massM1 attracts another massM2 with a force
directed along the line joining the two masses and having a magnituteFg of

Fg = G
M1M2

r2
(2.3)

5
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whereG is the Universal Gravitational Constant1 andr the distance in betweenM1 andM2. [5,55]

2.1.1.1 Keplerian Orbits The "Keplerian assumption" which underlies Keplerian orbits is a first
order approximation of the forces that apply to any satellite orbiting around a central body. Under
this assumption, the interaction between the attracting bodies is restricted to a two-body problem. [5]
Therefore, these laws can be applied to describe the motion of a satellite around the Earth. [55] The
influence of other moon’s or sun’s attraction is neglected and the only acting force is the Newtonian force
(or central force)µ/r2. As the massm of the satellite can be neglected with respect to the massM of
the Earth (central body),µ is given by [5]:

µ = GM (2.4)

which is approximately398600 km3/s2 for the Earth.
Figure 2.1 illustrates the geometry of such an orbit. The ellipse is described by the semi-major and

semi-minor axesa andb with the Earth placed at one focal point. The radiusr denotes the distance
of the satellite from the Earth’s center; the point of the orbit wherer is smallest is calledperigeewith
r = rp and the point with largestr is denotedapogeewith r = ra. The angle between the perigee and
the satellite as seen from the Earth’s center is commonly referred to astrue anomaly. In contrast, the
eccentric anomalyE traces a point on a circle, with the radius equal toa, that circumscribes the elliptical
orbit.2 The shape of the ellipses is defined by the eccentricity (0 ≤ e ≤ 1). It determines, the distancec
of the Earth (i.e. one focal point) from the ellipse center and is given by

c = ea (2.5)

e =

√
1− b2

a2
(2.6)

The distance between the Earth’s center and the perigee (apogee) is accordingly

rp = a(1− e) (2.7)

ra = a(1 + e) (2.8)

which can directly be derived from the geometry illustrated in Fig. 2.1. [5,25,26,55]
Lemma: As for an eccentric anomaly of90◦ the radiusr is equal to the major-axisa. This relation is

given by the definition of the ellipses itself:
An ellipse is the locus of points the sum of whose distance from two fixed points is constant. The two
fixed points are called the foci of the ellipse. [53]

The constance is known to be2a and thus, we can write

E = 90◦ ⇒ r = a

⇒ a2 = c2 + b2

which, in conjunction with Eq. (2.5) can further be simplified to Eq. (2.6). •

2.1.1.2 Satellite Velocity and Orbit Period

Velocity For a satellite orbiting around the earth, the total energyEb consisting of the potential energy
EU and the kinetic energyEK is constant and commonly referred to asbinding energy. [55,68,71]

EK + EU = const.= Eb (2.9)

The kinetic energy is given by

EK =
1
2
mv2

satellite +
1
2
mv2

Earth︸ ︷︷ ︸
=0

(2.10)

1Gravitational ConstantG = 6.6730010−11m3kg−1s−2

2Lutz et al. [55] use a different definition of the eccentric anomaly. They measure the angle in between perigee and the satellite on
its orbit (and not on the circumscribing circle) as seen from the ellipses center. The definition provided in this work is, nevertheless,
more commonly used [5,25,26].
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Fig. 2.1 Parameters of Elliptical Orbits, 2-D-view [5,25,26]

The satellite’s orbit is observed from the Earth; thusvEarth = 0 and we can write forv ≡ vsatellite:

EK =
1
2
mv2 (2.11)

The potential energy can be derived from Eq. (2.3):

EU = −
∫ r

r0

Fg dr + EU (r0) (2.12)

= G
mM

r
for EU (r0)

def= 0 (2.13)

and the binding energyEb is known to be inversely proportional of the major axes3 [71]

Eb ∼
1
a

(2.14)

The proportional factor−µm/2 in combination with Eq. (2.4) allows us to rewrite Eq. (2.9)

mv2

2︸ ︷︷ ︸
EK

−µm

r︸ ︷︷ ︸
EU

= −µm

2a︸ ︷︷ ︸
Eb

(2.15)

which finally yields to the satellite’s velocity4

v =

√
µ

(
2
r
− 1

a

)
(2.16)

3For a detailed discussion of the binding energy including energy diagrams and the analysis of the resulting hyperbolic, parabolic,
elliptical, and circular orbits, reference is given to R. G. Brown’s lecture notes. [27]
4The interested reader is referred to Bob Jenkins website which provides several interactive illustrations of orbits and the corre-
sponding plant’s velocity. [52]
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The velocity depends on the the (current) radiusr which is a function of the true anomaleθ. The velocity
is smallest for a large radiusr which is the case for the satellite passing the apogee, and largest in the
perigee.

Lemma: The proof of Eq. (2.16) is straight forward for a circular orbit (r ≡ a). [68] A planet moving
in a circular orbit around the Earth is accelerating toward the latter with the centripetal accelerationv2/r.
As this acceleration is caused by the gravitational forceFg which is given in Eq. (2.3), we can determine
the satellite’s velocity in conjunction with Eq. (2.4)

acceleration =
v2

r
=

µ

r2
=

Fg

m

v =
√

µ

r

which is identical to Eq. (2.16) for (r ≡ a).
Further, we can define a radius-independent mean motionv̄ of the satellite in order to find a relation

between the satellite’s velocity and the eccentric anomaly:

v̄
def
=

v

r
=

√
µ

r3
(2.17)

and rewrite Eq. (2.17) as

v = rv̄ = rE
d

dt
(2.18)

using both, the satellite’s mean motion and the angular velocity of the eccentric anomalyE d/dt as, for
a circular orbit, the eccentric anomaly is identical to the true anomaly. •

Orbit Period The orbit period can be calculated on the basis of Kepler’s observations. [26] His famous
equation:

t =
E − e sinE

v̄
(2.19)

calculates the time elapsed since the satellite has passed the perigee as a function of the eccentric anomaly
E, the satellite’s mean motion̄v, and the eccentricity of the orbite. If the spacecraft were traveling on the
circumscribing circle shown in Fig. 2.1 rather than the elliptical orbit, it would have an angular velocity
equal to the mean motion. Thus we can write according to Eq. (2.18)

v̄ =
√

µ

a3
(2.20)

and dereive from Eq. (2.19) and an eccentric anomaly ofE = 2π the orbit periodT

T =
2π

v̄
(2.21)

= 2π

√
a3

µ
(2.22)

2.1.1.3 Orientation in the Orbit Plane The following parameters uniquely describe the orbit
plane’s orientation in an inertial reference frame (Fig. 2.2):

1. inclination,

2. right ascension of the ascending node (RAAN), and

3. argument of perigee.

The inclination defines the angle between the orbit plane and the equatorial plane. It is counted
positively with respect to the ascending satellite orbit track.

Theascending nodeis passed when the satellite enters the northern hemisphere. Theright ascension
of the ascending node(RAAN) determines the angle in the equatorial plane between a reference direction,
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Fig. 2.2 Orientation of the Orbit Plane [55]

which is usually the direction from the Earth’s center to the sun at vernal equinox, and the ascending
node.

Theargument of perigeeis the angle in the orbit plane between the ascending node and semi-major
axis of the ellipses (location of the perigee). [55]

Thus, the orientation and shape of a satellite orbit is defined by the following five parameters [5]:

1. Semi-major axis of the ellipse,

2. eccentricity of the ellipse,

3. inclination of the orbit plane

4. right ascension of the ascending node, and

5. argument of perigee.

If another parameter, i.e. the true anomaly, is included, the position of a satellite is described. This set
of six parameters is then referred to asKepler elements. [55]

2.1.1.4 Typical Circular Orbits Besides the shape of the orbit, i.e. either elliptical or circular, the
orbit altitudehand its inclinationiare the most important orbit characteristics. [55] Besides characterizing
two special kinds of circular orbits, i.e. Low Earth Orbits (LEOs) and Geostationary Orbits (GEOs), this
section mathematically derives the orbit altitude and the associated propagation delay.

For circular orbits, the semi-major axisa is equivalent to the orbit radiusr as seen from the Earth’s
center (a ≡ r) as illustrated in Fig. 2.3. The slant ranged can directly be derived according to the Cosine
Law [24]

d =
√

R2
e + r2 − 2Rer cos E (2.23)

whereE denotes the eccentric anomaly which is identical to the true anomaly for circular orbits. The
radiusr can be retrieved by simple rewriting Eq. (2.22)

r = 3

√
µ

(
T

2π

)2

(2.24)

which finally yields to an orbit altitudeh as seen from the Earth’s surface of

h = 3

√
µ

(
T

2π

)2

−Re (2.25)
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Table 2.1 Orbit Comparison for Satellite Communication Applications [5]

Orbits LEO MEO GEO

Orbital Period 1.5 – 2 h 5–10 h 24 h
Altitude Range 500 – 1500 km 8000 – 18000 km 40000 km (i=0)
Visibility Duration 15 – 20 min./pass 2 – 8 h /pass Permanent
Elevation Rapid variations; Slow variations; No variation;

high and low angles high angles low angles at high
latitudes

Propagation Delay Several milliseconds Tens of milliseconds > 250 milliseconds
Link budget Favourable; compatible Less favourable Not favourable for

with small satellites and handheld or small
handheld user terminals terminals

Instantaneous ground ≈ 6000 km ≈ 12000 – 15000 km 16000 km
coverage (diameter
at 10◦ elevation)

where, for simplicity,Re denotes to the mean equatorial radius of the Earth (Re = 6378.14 km).
If the orbit altitudeh is determined by an orbit periodT which is an integer divisor of a day

(T [houres] ∈ {1, 2, 4, 6, 12, 24}), the satellite positions reiterate periodically each day. [55] With-
out regard to the orbit period, certain regions of operation are useful as they do not fall into the Van Allen
belts:5

• Geostationary Orbit (GEO)

• Medium Earth Orbit (MEO)6

• Low Earth Orbit (LEO)

Table 2.1 compares the orbits with respect to satellite communication applications.

Geostationary Orbit A satellite launched in the equatorial plane (inclinationi = 0) whose circular
orbit has an orbit period equal to one sidereal day7 has a rotation exactly to the rotation of the Earth’s
surface directly below. Thus, the satellite appears to be stationary as observed from Earth. Its orbit
altitude is accordinglyh = 35786 km [25]; the useful coverage is limited by an elevation angle of 5 deg.
As the satellite appears to be stationary to an observer on Earth, its clear advantage is that antennas can
be pointed to the satellite without tracking capabilities. [5]

Non-Geostationary Orbit Non-GEO satellite constellations are mostly used to perform special func-
tions and services, i.e. weather observations, remote earth exploration, radio-navigation, communica-
tions, surveillance, etc. One of the unique features of these satellites is the ability to view the entire
Earth’s surface periodically from a single satellite. If simultaneous coverage is required, a number of
satellites can be employed. [5]

EspeciallyLow Earth Orbit satellites can help to provide global access to the telecommunication
infrastructure. The propagation delay associated with their orbit altitude of 500 - 5000 km makes them
feasible to provide delay sensitive communication services. For this purpose, more than one satellite is
required to guarantee continuous coverage. This requirement is met by, e.g., a Walker constellation.

5The Van Allen belts are regions of the ionosphere with high ion concentration which dramatically reduces the satellite’s lifetime.
[5,25,26,55]
6A synonym for MEO is ICO: Intermediate Circular Orbit [55]
7The time required by the Earth to rotate once with respect to the stars equals one sidereal day (= 23 h 56 min 4.09 s)
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Fig. 2.4 Orbit Paths associated with Walker Constellation of ATM-Sat Project

2.1.2 The Walker Satellite Constellation

J. G. Walker developed satellite constellations for global coverage. Deriving from his work, a satellite
constellation of

• regularly spaced,

• circular orbits with

• equal orbit altitudes and

• equal inclinations

is often called Walker constellation. [25] Thus, a Walker constellation can be described by the total
number of satellitesN , the number of orbit planesP , and a phasing factorF .8 This triplet is called the
Walker Notation: N/P/F. Figure 2.4 illustrates the orbit paths of a Walker 72/12/1 constellation as used
within the ATM-Sat project. The orbits have an inclination of25◦. [18]

Assuming, a Walker constellation implies inter-satellite links (ISLs) and a shortest-path routing algo-
rithm, the following two relations hold:

1. To come as close as possible to the point which is the farest away from the current satellite, i.e.
on the other side of the Earth, only by ISLs in the same orbit plane, the number of intra-ISLsp is
limited by

p ≤
⌈

N

2P

⌉
(2.26)

2. If only ISLs which change the orbit plane (inter-orbital ISLs) are used, the number of inter-orbital
ISL q is limited by

q ≤
⌈

P

2

⌉
(2.27)

8The phasing factorF , F ∈ [0, P − 1]N0 , determines the angular offset between the satellites in adjacent orbit planes. [55]
It is not further discussed within the contents of this work (and sometimes even omitted), even though the interested reader is
referred to C. Brown [25] who provides further details on the relation between the phasing factor and a global coverage of a Walker
constellation.
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Even though this characteristic is obvious due to the symmetry of a Walker constellation, it will later on
allow to tremendously reduce the complexity of used simulation models.

Additional characteristics with respect to the distance in between two satellites (and the associated
propagation delay) can be found:

The geometry of Walker orbits directly yields to the fact that the distance in between two satellites in
the same orbit plane is constant. So is the associated propagation delay.

Due to the regular geometric characteristic of the employed Walker constellation, further character-
istics can be noted with respect to the distance in between two satellites on neighboring planes:

All satellites have the same orbit period. Thus, their position with respect to each other is also
periodic which directly yields to a periodic function describing the distance / associated propagation
delay in between two satellites.

In the contents of the ATM-Sat project, further simplifications can be made. ATM-Sat considers only
inter-orbital ISLs to the next-most satellite. Thus, the associated propagation delays of all inter-orbital
ISLs resemble each other. For a fixed time frame, the associated propagation delays are equal except for
a phase shift and we can write:

Let L be the set of all possible inter-orbital ISLs, then the delay associated with each member ofL
resembles each other except for a phase shiftϕ:∧

l1,l2∈L

∨
ϕ

(dinterISL(l1, t) = dinterISL(l2, t+ϕ)) (2.28)

As satellites are evenly spaced within an orbit, the phase shiftϕ can be expressed as

∨
n∈[0,p−1]

(
ϕ = n

Torbit

p

)
(2.29)

where, for the ATM-Sat project, according to Eq. (2.22), the orbit periodTorbit ≈ 112 minutes and the
number of satellites per plane isp = 6.

2.2 ENCODING OF DATA AND FORWARD ERROR CORRECTION

The fundamental of coding is to decrease the bit error rate of a communication channel by increasing the
symbol rate or bandwidth. A common bit error rate (BER) for uncoded information in a satellite environ-
ment is approximately10−2 for an energy-per-bit over noise-power ratio (Eb/N0) of 4 dB. Biorthogonal
block coding or Reed-Solomon coding can decrease the BER by a factor of 10 and convolutional coding
is even able to reduce the BER to105. [26]

The following sections will introduce the adaptive FEC scheme used within the ATM-Sat project and
derive from that scheme the effective error model which is later on used for TCP analysis.

2.2.1 FEC Method Applied within the ATM-Sat Project

The ATM-Sat target system uses an adaptive MAC layer protocol with reduced contention probability in
the uplink and an improved bandwidth utilization due to its adaptive FEC scheme. [38,39] The variable
structure of the MAC frames9 guarantees a fixed useful data rate by adapting the MAC packet length to the
employed FEC scheme. The MAC framing structure does not effect the BER. Therefore, the following
excerpt, taken from Emmelmann and Bischl [38], does only relate to the employed FEC scheme:

The designed satellite system utilizes the Ka-band which mainly suffers from high rain attenuation
and — in case of moving vehiculars — also from signal shadowing due to obstacles like trees or
buildings. As for this project, vehicles are equipped with directional antennas, multipath fading is
slight [45]. Signal shadowing due to obstacles is too high to be compensated by forward error correction
(FEC) thus leaving its focus on the attenuation caused by rain.

9The variable structure of the MAC frames is not further detailed as it does not effect the BER. Please refer to [38] for a detailed
discussion of the framing structure.
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Fig. 2.5 FEC-Depending Link Availability (CERth = 10−6) [38]

As rain attenuation appears only from time to time and its maximum fade slope value for 0.01%
of an average year is about 0.6 dB/s [28], adaptive forward error correction and also adaptive mod-
ulation techniques are applied to efficiently use the available bandwidth. This technique is a major
improvement in contrast to traditional systems with non-adapting FEC schemes as the latter requires a
rather high link margin which unnecessarily delimits up- and down-link capacity. The employed FEC
scheme guarantees a fixed useful data rate by adapting the MAC packet lengths according to the used
coding and modulation scheme.10 The system design includes three major FEC schemes:

• No FEC is applied. The ATM cells are merely guarded with a 32-bit CRC with a block length
of 57 bytes. The CRC is used for error detection only.

• Reed Solomon Code, RS(65,53) over GF28, which can correct up to 6 byte errors.

• Rate 1/2 block turbo code concatenated with a RS(65,53) code.

Figure 2.5 illustrates that even at a minimum elevation angle of20◦, the system can guarantee a
cell error rate threshold (CERth) of 10−6. If we define link availability as the percentage of time
the givenCERth is guaranteed, a simple CRC error detection scheme without any FEC correction
methods results in a link availability of 99.14% (i.e. the link is not available for 72.7 hours per year).
The RS(65,53) code increases the availability to 99.80% and the concatenation of RS and Turbo codes
improves link availability to 99.92%.11 As all used codes are systematic, the uncoded block error
rate of the information part can be used together with the measured received power to decide when to
switch between the codes.

We use the availability burst-length product (ABLP) to compare the efficiency of this adaptive FEC
scheme with a permanent RS(65,53) coding at QPSK modulation. The ABLP of the permanent scheme
is 1.22 (= 99.80% ∗ 65/53). The adaptive FEC scheme has a higher availability of 99.92% and has
nevertheless a lower ABLP of only 1.08 (= 99.14% ∗ 57/53 + 0.66% ∗ 65/53 + 0.12% ∗ 130/53).

In addition to adapting the FEC to the experienced rain attenuation and elevation angle, the modula-
tion scheme can be changed in rain-less periods and high elevation angles to 8 or 16 QAM. Figure 2.6
illustrates the expectedEs/N0 for a satellite overpass (i.e. for different elevation angles) at different
rain intensities. The shaded background depicts the areas where the givenCERth of 10−6 can be
guaranteed by using a specific FEC and modulation scheme. E.g., for a rain-less period, the system may
switch to QAM, 8 QAM with a mere CRC checksum (att = −5.5min in Fig. 2.6 which corresponds
to an elevation angle of approx.30◦) or even to QAM, 16 QAM (att = −2.5min, elevation angle of

10The design supports also a fixed MAC packet length by adapting the useful data rate even though this option is not implemented
in the demonstrator.
11Reference constellation: 72 satellites in 12 Walker orbits at 1350 km,47◦ inclined. Link parameter: 30 GHz QPSK with
2447 ksymbols/s, EIRP 42.7 dBW, G/T 4.5 dB/◦K, 2.5 dB Implementation losses.
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Fig. 2.6 Es/N0 for a satellite overpass at different rain intensities (in mm/h); required coding/modulation for an
ATM CERth of 10−6 and the resulting burst length

approx.80◦). Only aEs/N0 below 10 dB requires QPSK with RS and Turbo code. Figure 2.6 also
includes the burst lengths corresponding to each FEC-modulation pair.

The developed MAC protocol has been implemented on a FreeBSD based, modular prototyping envi-
ronment [36] which allowed measuring the effective BER12 of an end-to-end communication connection.
These measurements

included the effects of rain at an intensity of 6, 10, and 16 mm/h at different FEC schemes. Fig. 2.7
depicts the experienced cell loss ratio for various coding schemes and rain intensities for an entire
satellite overpass. For the reader’s convinience, it also includes the current elevation angle for a given
time. Even for severe rain falls of 16 mm/h, the requiredCERth can be guaranteed with a simple
CER FEC scheme for elevation angles higher than approx.65◦. For lower elevation angles, the MAC
has to switch to RS coding and finally to the concatenated FEC coding scheme (RS and Turbo). The
measurements also illustrate that for slight rain falls of only 6 mm/h, the bandwidth efficient CRC
FEC coding may be used for almost an entire satellite overpass.13

These measurements show that the adaptive FEC scheme results in a two-state link behavior: Either
the link provides an effective BER better than10−8 or it is not available at all as the dramatically increased
BER prohibits any communication. [38,39]

2.2.2 Effective Error Model for TCP Simulations

The analysis of TCP over an erroneous LEO satellite link focus on the specific ATM-Sat system. The
latter employs an adaptive MAC & FEC scheme which as been shown to result either in a rather good
link state with an BER of10−8 or a completely unavailable link. These "black outs" were not subject of
the simulation, thus, the following three error rates were considered:

• An effective bit error rate of10−8 which reflects the actual system behavior of the ATM-Sat project,

12Actually, Emmelmann et al [38,39] measure the cell loss ratio which can be put in correlation to an effective BER for an ATM
cell stream.
13Source: Emmelmann and Bischl, 2003. [38]
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Fig. 2.7 Measured Error Rates for Various Codings and Rain Intensities

• an effective bit error rate10−5 which is common for an uncoded satellite channel, [26] and

• a perfect, error free link which allows to isolate effects of a variable propagation delay channel
apart from imposed bit errors.



3
Overview on

Simulation Tools for Satellite and
Communication Networks

This chapter will briefly introduce satellite constellation and channel simulators as well as network layer
oriented simulators. Only those tools are discussed which had been evaluated in an early stage of the
ATM-Sat project [6] or which were developed within the project itself.

Details on the modeling concept of Opnet Modeler are presented as the project partners agreed on
using Opnet for both, MAC protocol development and TCP simulation.

3.1 SATELLITE CONSTELLATION AND CHANNEL SIMULATORS

3.1.1 Satellite ToolKit

The Satellite ToolKit (STK) is a commercial-off-the-shelf (COTS) analysis and visualization tool. The
standard core of STK is available for free and includes various analytical capabilities (e.g. precise
calculation of a satellite’s position and altitude in time), allows orbit / trajectory generation, and features
visibility analysis of any pair of STK objects. [15]

STK can perfectly be used to visualize any satellite orbit based on its orbit parameters and to retrieve so
called AER (Azimuth Elevation Range) data with respect to any two STK objects. The latter functionality
allows, in the contents of this work, to gain information on the distance (range) in between two satellites
in neighboring orbit planes (ISLs) and in between a ground terminal and a satellite (up- and downlink).

3.1.2 The Ohio Network Emulator

ONE (the Ohio Network Emulator) is a tool to emulate a network between a pair of interfaces on a single
Solaris-based workstation. Each packet arriving at one interface is forwarded via the other interface.
Before leaving the other interface, a delay may be imposed on the packet and the packet can be corrupted
with a given probability. In order to impose variable propagation delays, as encountered in a satellite
network, ONE interfaces with the Satellite ToolKit (STK). [12,63]

ONE might be used to run communication flows over an emulated satellite network while abstracting
entirely from any underlying, satellite-specific MAC layer. As this functionality limits ONE to experi-
ments employing existing TCP implementations, it is not used within this work. Additionally, conduction
numerous experiments in real-time can take up to several weeks for a single run of a simulation set which
is not reasonable in a first approach to evaluate TCP.

17
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Fig. 3.1 ATM-Sat Satellite System Emulator

3.1.3 ATM-Sat Satellite System Emulator

The ATM-Sat Satellite System Emulator provides an environment to prototype, test, and evaluate MAC,
tools to simulate and signaling protocols. [22,23] Its three major components, i.e. thesatellite channel
emulator(SCE),satelliteandground terminal DLCs(SDLC & TDLC), and thecontrol station(CS), act
independently (Fig. 3.1). Thus, the emulation of a satellite channel with respect to its associated variable
propagation delay and channel error rate is possible without prior knowledge of the MAC protocol.

The SCE units is able to impose a predefined, time-variant propagation delay on packets being for-
warded. Corrupting packets based on a given error rate is also possible. The control station propagates
via SNMP to the SCE unit look-up tables which include the variable propagation delay and current error
rate. These tables can be derived from a STK-based analysis of the considered satellite system.

A further advantage of the system is its capability to run end-to-end significant (user) applications
over the emulated satellite channel as any possible set of terminals running user applications can be
connected via the system with or without using a specific MAC layer protocol.1 [38] Even though this
allows to conduct experiments concerned with higher layer protocols, e.g. TCP, over a satellite channel
as long as the an implementation of the probed protocol can be run on any kind of user terminal, the
ATM-Sat Wireless Emulator was not used for the work presented in this paper as it was not available
at the time the simulations took place. Additionally, running TCP analysis in real-time can take up to
several weeks if a large number of TCP flavors and buffer size settings are considered.2

1If the SDLC and TDLC units are omitted, the system acts merely as a link / network emulator comparable to ONE.
2This network centric view has been extended into anIntegrated Prototyping and Simulation Architecture for Space Specific
Protocol Developments and Verificationswhich merges the Opnet-based simulation approach presented in Section 5.2 with the
target system oriented MAC protocol prototyping. [36]
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3.2 NETWORK SIMULATORS

3.2.1 NS

The Network Simulator (ns-2) is a discrete event simulator targeted at the networking research and
educational community. It is focused on modeling network protocols, e.g. TCP, UDP, and other multi- and
uni-cast protocols. Besides wired and wireless link models (including satellite channels), ns-2 includes
application models (web, ftp, telnet) as well as routing models (ad hoc routing in sensor networks). Its
open source code is freely distributed which allows a large community in the research and educational
area to share simulation models. [1,43]

As ns-2 focuses on the network layer, it makes it harder to extend simulation models by including
target system specific MAC layer protocols. In the latter case, Opnet is more favorable.

3.2.2 Opnet Modeler

3.2.2.1 Introduction Opnet Modeler is an object-oriented, discrete-event based network simulator.
It comes with an interface to network management tools (e.g. HP openview) and with a large library of
standard network components from network devices (e.g. switches, server, and firewalls) over protocol
stacks (which include the entire TCP/UDP/IP protocol suite) up to link layer protocols. Besides network
specific simulations, Opnet Modeler allows to set financial cost attributes for devices which allows an
market oriented view of new and existing network topologies and their performance. Thus, besides in
the educational and research community, Opnet Modeler is well accepted in commercial environments.
[8,64]

Opnet provides all protocol and application models in C-based source code which easily allows
modifications. Besides its of being well accepted in a commercial environment, Opnet’s capability
to incorporate physical layer characteristics and environmental effects in the simulations was a major
argument within the ATM-Sat project in favor for Opnet vs. ns-2. [32]

The following section will provide a brief overview on Opnet’s modeling concepts and nomenclature to
allow the reader to easily follow later on the detailed description of the developed TCP-related simulation
models.

3.2.2.2 Overview on Opnet’s Modeling Metholodgy Opnet simulation models are based on
a series of hierarchical views: the network view, the node view, and the process view. Each view
represents parts of the structure of real networks, equipment, and protocols and has its own specific
editor for modifications (Fig. 3.2).

Modeling Networks In order to model any kind of communication network, the topology of the latter
has to be described. A network may consist ofnetwork nodesrepresenting any kind of network device
(e.g. router, switches, or workstations) andsubnetworks. Link objectsare used to connect network
nodes with each other or with a sub-network; they can either provide a simplex or duplex point-to-point
connectivity or have a bus characteristic.

Networks (and sub-networks) can be unlimitedly nested. In addition, each network can be put in a
geographical context (dimensions of the view or the exact position of the network on the Earth) and can
reflect physical characteristics i.e. mountains and rivers. [64]

In order to simulate "moving objects", i.e. cars or satellites, each network node can be attached to
a trajectory description. With respect to simulating a satellite network, trajectory descriptions for each
satellite of a constellation can be imported by Opnet from STK.

Description of Network Nodes As a network node can represent any kind of network device, the
node view consequently captures the architecture of a network device or system. It illustrates the data
in between functional elements within the network device. These functional units are calledmodules.
Each module can generate, send, and receive packets from other modules to perform its function within
the node. Modules typically represent applications, protocol layers, algorithms and physical resources,
i.e. buffers, ports, and busses. Modules are assigned process models to achieve any required behavior.
[64]
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Fig. 3.2 Opnet Modelling Methology [64]

Two standard library network node components, a so calledapplication definitionandprofile definition,
allow easily to create predefined traffic on a network. Within the "application definition" network node,
the user may describe any kind of standard application, i.e. IP-telephony or retrieving a large file via FTP.
Parameters of the application definition include for the latter example, the size of the file to get, possible
a preferred server (otherwise, a network node offering FTP Server functionality is randomly chosen)
and a description, how often this kind of file is retrieved. Finally, the "profile definition" describes a
user profile. E.g., a user might call twice a day a colleague via IP-telephony and start once a day an
FTP file transfer. Consequently, its profile definition would specify the time of the day, the previously
defined application "IP-telephony" would be started (of course twice a day) and when the FTP file transfer
application should start. Finally, the "profile definition" can be attached to any network node representing
a computer / workstation which executes the user profile.

Description of Processes Opnet uses finite state machines (FSMs) to support the specification of
protocols, resources, etc. Each state of a FSM can contain C/C++ code to fulfill the desired behavior of
the state. [64] Even though using FSMs is a fast and easy approach to describe or develop new protocols,
it is also possible to encapsulate the entire functionality of a module in external C/C++ code.

Modeling Communication Channels Communication channels are represented by so called "link
models". Opnet distinguishes between point-to-point links, buses, and wireless transmission links. An
open architecture is provided to allow developers to specify a customized behavior for each individual
link on a per-transmission basis. Opnet denotes this architecture as thetransceiver pipelineas it provides
a conduit connecting a transmitter to one or more receivers.

The structure of the transceiver pipeline is similar for each link type. In order to transfer a packet from
a transmitter to a receiver, a series of computation functions is applied to the packet. Each of this function
models a particular aspect of the link behavior and is referred to as apipeline stage. The interface of
each pipeline stage and the order in which they are executed is standardized but the functionality of the
pipeline stage itself can freely be implemented by the user outside Opnet’s simulation kernel.
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The principal objective of a transceiver pipeline is thus to determine whether or not a packet can be
received at the link’s destination including the time at which the packet is received. Depending on the
kind of link, a transceiver pipeline consists of one3 or several of the following pipeline stages:4

• Receiver Group (r)

• Transmission Delay (pbr)

• Link Closure (br)

• Channel Match (r)

• Transmitter Antenna Gain (r)

• Propagation Delay (pbr)

• Receiver Antenna Gain (r)

• Received Power (r)

• Background Noise (r)

• Interference Noise (r)

• Signal-to-Noise Ratio (r)

• Collision (b)

• Bit-Error-Rate (r)

• Error Allocation (pbr)

• Error Correction (pbr)

The order of pipeline stages in which they are executed is not considered here. [3]

3A transceiver pipeline of one (functional) stage simply implements "void-functions’" for its remaining stages.
4p — point-to-point transceiver pipeline; b — bus transceiver pipeline; r — radio / wireless transceiver pipeline
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TCP/IP over

Satellite Based Communication
Network

This chapter provides a brief introduction to TCP fundamentals to allow readers not familial with TCP
internals to easily follow the conducted simulations and results as described in Chapter 5.

Section 4.1 describes the general packet format and puts emphasis on TCP’s flow control and retrans-
mission algorithms. Second, widely spread TCP implementations are named and put into context of this
work (Section 4.2). Finally, Section 4.3 outlines some major characteristics of satellite based networks
and how they affect TCP performance.

4.1 FUNDAMENTALS OF TCP/IP

TCP provides a reliable flow of data between two hosts. Its internal functionalities include dividing the
data passed to it from the application into appropriately sized pieces for the network below, acknowledging
received data, and sets certain timeouts to assure packets are either retransmitted if they are lost or
acknowledged by the TCP entity on the other end of the connection. [73] As an OSI-layer-3 protocol, it
is not concerned with network-independent addressing of its interlocutor (which is realized by IP) but
rather with addressing a certain application represented by port numbers. [72,74] The TCP header is
illustrated in Fig. 4.1. Besides any (optional) data and option field, it is 20-byte-long which results in a
minimum IP datagram size of 40 Bytes. [73]

An introduction to all features and facets of TCP is out of the scope of this work which limits the
following sections to the aspects of TCP which are most relevant for understanding the conducted analysis
of TCP performance over a LEO satellite network with respect to the advertised receive buffer size and
timer granularity. We follow the structure suggested by Stevens [73] which highlights features of the
connection establishment phase, details TCP data flow aspects, and closes with today’s most widely
spread congestion control and retransmission schemes.

4.1.1 Connection Establishment

4.1.1.1 Maximum Segment Size In order to minimize the overhead associated with the TCP
and IP header, TCP should determine the largest "chunk" of data it can transmit without fearing its
fragmentation. Therefore, each TCP entity (might) announce the size of the largest segment that it can
possibly transfer. This size is referred to as the maximum segment size (MSS). The two TCP interlocutors
agree afterwards on the smaller value of the two announcements.

The announcement is not mandatory. If a MSS proposal is not received, an entity assumes a default
of 536 bytes which results for a 20-byte-long TCP and 20-byte-long IP header in a 576-byte-long IP
datagram. [73]

23
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data (if any)

options (if any)

TCP checksum urgent pointer

hdr length reserved Flags window size

ACK number

sequence number

source port number destination port number

0 4 5 9 10 1516 31Bit

Fig. 4.1 TCP Header Format [73]

In an Ethernet-based environment, best performance is achieved for a MSS of 1460 bytes [59] whereas
for a non-local IP-address of the communication partner, the MSS normally defaults to 536.

It should be noted that the MSS announcement does only consider the largest segment size each
interlocutor can handle. Fragmentation may still occur if an intermediate router cannot forward these
segments in one piece. To avoid this situation, MTU discovery had to be employed. [73]

4.1.1.2 Window Scaling During connection establishment, each TCP entity announces its local
receive window size which reflects the amount of data that the receiving TCP entity may handle without
having the upper layer application receiving the data (buffer size). This window size is continuously
updated during the connection and is therefore a standard component of the TCP header (refer to Fig. 4.1).
The window size is given in bytes which results to a maximum supported advertised receive window
/ buffer of 216 − 1. As this limit on the buffer might be to stringent, especially for high bandwidth
connections or large round trip times associated with the link, TCP might employ a window scaling
option. [49,51]

The window scaling option tells TCP by how many positions the value given in the header has to be
shifted to the left. Valid shifts range in between 0 (no shift) and 14 which results in a maximum supported
window size of(216 − 1) ∗ 2shift bytes.

The LEO satellite network considered here does not require the window scaling option. As its
bandwidth delay product, which is the upper bound to fully saturate the link by a single TCP connection,
is well below 65535 bytes, a 16-byte-long window size is efficient.

4.1.1.3 Other TCP Options

Selective Acknowledgment The Selective Acknowledgment TCP flavor / options was originally pro-
posed in RFC 1072 [51] and allows the receiving entity to provide exact information about the packets
correctly arrived which in turn allows the sender to maintain information on which packets were (pre-
sumingly) lost. During the fast retransmission phase, the sender first retransmits all suspectly lost packets
before sending new ones. This allows the sender to recover from several lost segments within one RTT.
[21,33,41,56]
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At the time of conducting the experiments presented in this thesis, SACK was not a standard, widely
spread TCP flavor and, thus, is not further analyzed within the contents of this work.

Timestamping The timestamp option lets the sender place a timestamp value in every segment. The
receiver reflects this value in the ACK allowing the sender to calculate an RTT for each received ACK.
This options is useful for extremely large window sizes as TCP can only estimate once the RTT per
congestion window. [73]

Turning the timestamp option on might increase TCP performance but will most likely not degrade
results gained in the work. Thus, the evaluation of the effects of placing a timestamp in every ACK is
left for the future.

4.1.2 TCP Data Flow Control

4.1.2.1 Delayed Acknowledgments Normally, TCP does not send an ACK the instant it receives
data. Instead, it delays the ACK and hopes to have data going in the same direction as the ACK, so the
ACK can be sent along with the data. If this ACK piggybacking is not possible within a certain amount
of time TCP sends a single ACK segment anyway. [73] This delayed ACK delay is usually set to 200 ms
which is compliant to the Host Requirements RFC [47] stating that the delay must be less than 500 ms.
This requirement is even more stringently met as most TCP implementations acknowledge every Kth
segment1 out of a group of segments arriving within the 200 ms interval which does avoid waiting for
the delayed ACK timer to elapse even if there is no pending traffic on the reverse channel. [51]

4.1.2.2 Sliding Window Mechanism & Retransmissions TCP determines the number of seg-
ments (or bytes) that it can transmit before receiving an acknowledgment by a sliding window mechanism.
IBM’s System Network Architecture (SNA) refers to this kind of flow control also aspacing group. [42]
The (effective) size of the sliding window may vary over the time and is set to the minimum of the
receiver’s advertised window size and the current value of the congestion window (CWND). Figure 4.2
numbers the bytes that have to be transferred from the sender to the receiver as 1 through 11. The first
three bytes have been successfully transfered whereas bytes 4 through 6 were sent but their acknowledge
is still pending. As the current effective window size allows 6 bytes to be transferred without receiving
an acknowledgment, TCP may further transmit bytes number 7 through 9 right away. As soon as further
segments are acknowledged, TCP may slide the window further to the right. [73]

The acknowledgment strategy of TCP has a direct effect on how the sliding window is allowed to
move forward. As illustrated in Fig. 4.2, TCP numbers the bytes to be transferred sequentially. An
ACK does always include the byte number of the next byte expected to be transmitted, i.e. an ACK(4)
means that all bytes up to (and including) byte number 3 have successfully been received. Due to this
mechanism, a TCP implementation compliant to RFC 793 [46] may not acknowledge byte number 9 until
is has received both, bytes 4 and 5. On the sender side, TCP’s local timer, the retransmission timeout
RTO, expires as the ACK for byte number 9 does not arrive. As a result, TCP has to retransmit the entire
current window starting after the last acknowledged byte.2

4.1.2.3 Advertised Receive Buffer Size The advertised receive buffer size, which is also denoted
in literature as advertised window size, reflects the number of available bytes in the buffer of the receiving
node. The number may drop down to zero if, e.g., the receiver’s application is not able to retrieve its
pending data from the TCP entity. [73] As TCP must not transmit data if the receiver announces a window
size of zero, this behavior implements an implicit congestion control method.

The maximum advertised receive buffer size is controlled by the receiving process which can affect
TCP’s performance. Depending on the operation system, the maximum window size varies in between
2048 and 16384 bytes (refer to Table 4.1). [73] Mogul [59] as well as Papadopoulos and Parulkar [66]
show that the most common default value for the advertised receive buffer of 4096 bytes is not optimal for
Ethernet based communication links. This fact suggests to test TCP performance for different window

1K is usually set to 2.
2This retransmission behavior is the one implemented in RFC 793 which is also referred to as Vanilla TCP. TCP Reno, e.g.,
employs a slightly different mechanism as will be seen later on.
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Fig. 4.2 Sliding Window Mechanism [73]

Table 4.1 Default Values of the Advertised Receive Buffer Size for various Operation Systems [73]

Operation System Advertised Receive Buffer Sizea

4.2 BSD 2048 bytes
4.3 BSD 4096 bytes
SunOS 4.1.3 4096 bytes
BSD/386 4096 bytes
SVR4 4096 bytes
Solaris 2.2 8192 or 16384 bytes
4.4 BSD 8192 or 16384 bytes
AIX 3.2 8192 or 16384 bytes

a The same amount of memory is allocated to the sending buffers.

sizes which should at least include experiments considering receive buffers equal to the bandwidth delay
product.

4.1.3 TCP Timeout and Congestion Control

4.1.3.1 Round-Trip Time Measurement TCP recognizes a successful data transfer by receiving
an acknowledgment. As RFC 793 [46] does not specify an algorithm to detect a segment loss or corruption
other than waiting for an appropriate time for the ACK to arrive. This time is denoted retransmission
timeout (RTO). If a segment is not acknowledged within this time interval, it is assumed to be lost and
has to be retransmitted.

The RTO has to be determined according to the current round trip time (RTT) associated with the link.
The earliest possible time at which a segment’s ACK can arrive equals to one RTT. Nevertheless, the RTO
should be larger than the RTT since there is not always a one-to-one relation between a transferred data
segment and its corresponding ACK (one example is the delayed ACK mechanism described previously).

The original RFC [46] calculates the RTO based on a smoothed RTT estimator (calledR) using a
low-pass filter with a smoothing factorα and a variance factorβ

R ← αR + (1− α)M (4.1)

RTO ← βR (4.2)

whereM refers to the time in between sending a data segment and receiving the corresponding acknowl-
edgment. Obviously, as the ACK might be delayed, this interim might be slightly larger the the actual
RTT associated with the link. Recommended values forα andβ are 0.9 and 2 correspondingly. [73]
The smoothed RTT is calculated to reduce the influence of short peaks in the measured RTT as might
occur due to queuing delays in the network but does not consider the variance of the measured RTT.
Jacobson [50] shows that this lack of the original RTO calculation might result in an inappropriate RTO
value which can cause false retransmissions. This behavior is tremendous to the network as it adds
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unnecessary network load and does not occur for the newly proposed RTO calculation:

Err = M −A (4.3)

A ← A + gErr (4.4)

D ← D + h(|Err| −D) (4.5)

RTO = A + 4D (4.6)

whereA is the smoothed RTT andD is the smoothed mean deviation.Err denotes to the difference
between the current estimated (smoothed) RTT and the value that has most recently been measured.
The gaing of the average and the gainh for the deviation are usually set to1/8 (0.125) and1/4 (0.25)
correspondingly.3 [73] Usually, the RTO is lower bounded in TCP implementations and has a minimum
value of 500 ms.

Another aspect of measuring the RTT is TCP timer granularityG. TCP measures the round trip time
in multiplies ofG which is set to 500 ms for most analysis. As a result, TCP can only determine the
RTT with an error ofG which in turn might have effects on TCP’s ability to correctly reflect the actual
RTT associated with a link.4 Smaller values of the timer granularity allow TCP to better measure the
current segment round trip time but do also make this measurement more prone to sudden changes in the
RTT. As a result, fine timer granularities might cause TCP’s RTT measurement to reflect a RTT which
is slightly smaller than the actual RTT which in turn might yield to a premature collapse of the RTO.

An optimal estimation of the current RTT and thus an optimal size of the RTO are fundamental for best
possible TCP performance. If the RTO is too large, throughput will be low as a possible retransmission
will start delayed. On the other hand, if the RTO falls below the current RTT, premature retransmissions
will occur and network bandwidth is wasted.

4.1.3.2 Congestion Avoidance Algorithms TCP assumes that packet loss is caused by network
congestion (i.e., a router dropping packets due to over-full queues) rather than by corruption (high bit
error rates). Based on this assumption, two retransmission algorithms, namely Slow Start / Congestion
Avoidance and Fast Retransmit / Fast Recovery, try to avoid overloading the network. Both of them
calculate a maximum number of (unacknowledged) segments that are allowed to be transmitted at the
same time. This number is referred to as congestion window (CWND) which is used to determine the
effective window size of the sliding window mechanism as described in Section 4.1.2.2.

Slow Start and Congestion Avoidance Besides the congestion window, slow start and congestion
avoidance require an additional variable called slow start thresholdssthresh. If CWND is less than
or equal tossthresh, the slow start algorithm is executed to calculate consecutive values of CWND,
otherwise congestion avoidance is used. The two algorithms are defined as follows:

1. Slow Start

IncreaseCWND by one segment for each ACK that is received. AsCWND is implemented to
limit the number of unacknowledged bytes, it is increased by the number of bytes that the ACK
confirms to be received. This results in doublingCWND every round trip time if the delayed
ACK algorithm is not employed on the receiver side.

2. Congestion Avoidance

Congestion avoidance dictates thatCWND is incremented by1/CWND for each ACK received.
This is an linear increase as compared to the exponential increase of slow start.

Final adjustments toCWND andssthresh are made when congestion occurs which is indicated by
either receiving duplicate ACKs or by the expired RTO timer. In both cases, one half of the effective

3Jacobsen’s original work [50] included2D in the calculation ofRTO. A factor of4D is currently most widely spread in TCP
implementations.
4It should be noted that, e.g., FreeBSD calculates the RTT in multiplies of so called "timer tics" whose duration depend on the
clock rate of the computer chip. As the tic’s duration is far below 1 ms most of the time and since FreeBSD employ by standard
the timestamp option, the granularityG has no effects for this real operation system. [7]
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window size but at least two segments5 is saved tossthresh. Additionally, if the congestion is caused
by a timeout of the RTO, the congestion window is decreased to one segment. [73]

Figure 4.3 illustrates these situations for an advertised receive buffer size of 16.CWND is initialized
to 1 and afterwards exponentially increased (slow start phase). After 5 RTTs,CWND reaches the current
value ofssthresh and enters congestion avoidance in which the increase is only linear. It should already
be noted that after 4 RTTs, the effective window size is limited by the advertised receive buffer size of
16.

After 13 RTTs, the sender detects an duplicate ACK and adapts the current value ofssthresh to
one half of the current effective window size (i.e. 16). The value ofCWND is left untouched. The
first timeout occurs after 17 RTTs:CWND is initialized to 1; the value ofssthresh does not need
to be changed as is equals the half of the current effective window size. In the further duration of
the connection,CWND is always lower than the advertised receive buffer size and thus, the effective
window size equals the value ofCWND. Due to these circumstances, the final timeout after 22 RTTs
results in changingssthresh to 5.6

Fast Retransmit and Fast Recovery The retransmission scheme employed with slow start and con-
gestion avoidance relies on the RTO time to expire before a lost segment is retransmitted. The fast
retransmit algorithm avoids this problem and the fast recovery algorithm prevents the congestion win-
dow to entirely collapse after a single retransmission.

1. Fast Retransmit

The reception of duplicate ACKs does most likely indicate the loss of the data segment which was
transmitted right after the acknowledged data. Thus, if three or more duplicate ACKs arrive in a
row, TCP performs a retransmission of the presumingly lost segment.

2. Fast Recovery

5According to Section 4.1.2.2, the effective window size is the minimum of the advertised receive buffer and the current congestion
window.
6Existing implementations would rather changessthresh to either 4 or 8 as these values are a power of 2.
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After starting the retransmission,CWND is not entirely closed to one. Instead of slow start, TCP
enters the congestion avoidance phase.ssthres is set the one-half of the current effective window
size (minimum ofCWND and the advertised receive buffer size). Afterwards,CWND is set
to sshthresh plus 3 times the segment size. This is caused by the fact that we have received 3
duplicate ACKs which indicated that at least 3 segments have successfully been transferred thus
allowing an increase ofCWND.

Each time another duplicate ACK arrives,CWND is increased by one segment; if the number of
outstanding packets is less than the new effective window size, further packets may be transferred.

Finally, when the first ACK acknowledging new data arrives (which is the case when the retrans-
mitted packet had arrived at the sender),CWND is set to the current value ofssthresh.

This algorithm is able to recover from one lost segment within one RTT as a second lost segment can
not be detected due the lack of corresponding duplicate ACKs. If a second segment is lost within one
RTT, the RTO will expire and the congestion window will collapse to one segment. TCP restarts with
slow start and congestion avoidance afterwards. [11,72,73]

4.2 TCP FLAVORS

Different TCP implementations do often feature different algorithms with respect to how they handle
packet loss and how they avoid congestion (i.e. how the in- or decreaseCWND). These different
implementations are often referred to as "TCP flavors". The following section will shortly introduce the
three most common flavors: Vanilla TCP, TCP Reno, and TCP SACK.

TCP Reno is the most widely deployed version of TCP when it comes to a stable, commercial
environment. Even though TCP SACK is more and more deployed, it is not the standard TCP flavor and
is thus not further considered within this work.

4.2.1 Vanilla TCP

The implementation ofslow startandcongestion avoidance, which is thus compliant to RFC 793 [46], is
occasionally referred to as Vanilla TCP. The detection of congestion is only based upon the expiration of
the retransmission timer after which SSTHRESH is set to the value of CWND. The slow start algorithm
is applied to further increase CWND with a new initial value of one. Congestion avoidance takes over
as soon as CWND reaches SSTHRESH. [16,33]

4.2.2 TCP Reno

The TCP Reno implementation is based upon thefast retransmit and recoveryalgorithm. As an acknowl-
edgment is sent for each, or in the case of delayed ACKs for every second packet received, a duplicate
ACK containing the same number of bytes expected to be received, indicates a lost (or late) package.
After three duplicate ACKs, the sending TCP retransmits the missing packet immediately. After this fast
retransmit and the acknowledgment of the lost package, the fast recovery algorithm halves CWND and
artificially increases it by one for each duplicate ACK. Afterwards, the congestion avoidance phase is
entered. This behavior allows to recover from one lost segment within one RTT. [16,33]

4.2.3 TCP New Reno

TCP New Reno is a set of bug fixes of the original. It avoids multiple window reductions in one window
of data and constrains the burstiness of the sender upon leaving fast recovery. [44]

4.2.4 SACK TCP

Selective acknowledgments (SACKs) are used by the receiver to provide exact information about the
packets correctly arrived. During the fast retransmission phase, the sender first retransmits all suspectedly
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lost packets before sending new ones. This allows to recover from several lost segments within one RTT.
[16,33]

4.3 THE EFFECTS OF SATELLITE BASED NETWORKS ON TCP

Satellite channels are dominated by the following fundamental characteristics which have an effect on
TCP performance:

• noise and resulting transmission errors,

• bandwidth constrains,

• propagation delay characteristics different from a terrestrial environment, and

• asymmetric usage.

The influence of these characteristics can either be reduced by the satellite system which in turn almost
eliminates the effect on TCP, or have to be coped with by TCP itself. [11]

4.3.1 Noise and Transmission Errors

The strength of a radio signal falls in proportion to the square of the distance traveled. In a satellite
environment, the distance to overcome might range in between one thousand up to tens of thousand
kilometers (LEO vs. GEO satellite environment). Thus, this signal of a satellite link becomes rather
weak before it reaches its destination. Additionally, multi-path distortion and shadowing (e.g. blockage
by buildings or trees) become more important for mobile user terminals. As a result, bit error rates are,
compared to terrestrial wired networks, rather low. State of the art transmission systems are capable to
provide a BER of10−7 or less. [11]

TCP in its most widely spread flavors is not capable to distinguish in between packet loss caused
by congestion or caused by transmission errors. It always assumes network overload to have caused
intermediate switches to have dropped a packet and reduces its transmission rate accordingly. This
approach is not feasible for a rather high error environment frequently corrupting packets as it does not
fully utilize the available bandwidth.

Two approaches to overcome this problems can be considered: The first employs advanced error
correction mechanisms, e.g. Reed Solomon or Turbo coding, which in turn results in BERs approaching
todays fiber quality. [11, 22,32] Second, one might modify TCP algorithms in order to distinguish in
between packet loss caused by errors or network overload which results in optimized congestion control
algorithms and hence in a better link utilization (refer to Section 1.1.3).

4.3.2 Bandwidht-Delay-Product

In order to possible reach a link utilization of 100%, TCP’s effective window has to grow beyond the
bandwidth-delay-product (BDP). The reasoning is quite simple: TCP has to inject its last allowed data
packet just at the time it receives an acknowledgment for the first inflated packet (of its current effective
transmission window). Depending on the satellite constellation, the delay might be higher than 500 ms
(which is approximately the single-hop RTT for a GEO satellite) [5,18,26,34] or the bandwidth may
reach several Mbit/s for prospective satellite systems supporting multimedia traffic. [22] If the advertised
receive buffer is not large enough, optimal link utilization is not possible. Additionally, the range of
sequence numbers to acknowledge received data might not be large enough.

The problem coming along with large BDPs is not specific to a satellite environment but ubiquitous in
all high performance networks. Jacobson et al discuss this problem in RFC 1072 and show how it can be
solved, e.g., by TCP’s window scaling mechanism or the PAWS (protections against wrapped sequence
numbers) algorithm. [51]
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4.3.3 Variable Delays

TCP has to estimate the current round trip in order to properly retransmit any possibly lost segments. If
this estimation is not accurate, TCP might wait too long before it retransmits lost segments, or, in the
worst case in which the RTO actually falls below the current RTT, conducts unecessary retransmissions.
The propagation usually changes in a satellite environment apart from GEO constellations. Even though
publications on how TCP’s timer behaves in such a variable delay environment [14,35] are limited, they
show that TCP is, at least for a standard timer granularity of 500 ms, well capable to reflect satellite
specific variable propagation delays.

4.3.4 Asymmetry

Literature usually distinguishes two kinds of asymmetry [4,31,44,54,62] which focus either in the link’s
capacity or its physical characteristics with respect to the associated delay:

1. bandwidth asymmetry and

2. asymmetric propagation delay of the forward and reverse channel.

The first is a frequent phenomenon as the satellite’s downlink provides usually a high bandwidth whereas
the uplink, especially for mobile terminal who are limited in their transmission power, lower bit rates
are common. The second asymmetry might occur, e.g., if a user employs a satellite system to broadcast
data to users using a low cost, dial-up channel to acknowledge the reception.7

7The discussion of both aspects is out of scope of this work; the interested reader is referred to [4, 31, 44, 54, 62] for further
information on this matter.





5
Simulation of TCP over a LEO

Satellite Link

This chapter focuses on the simulation of TCP over a erroneous satellite LEO satellite link as encountered
within the ATM-Sat project. Aspects of the simulation include the effect of TCP’s timer granularityG
on both: TCP’s ability to reflect the variable propagation delay of the satellite channel and the effect of
a hand-tuned timer granularity on TCP’s throughput performance in the presence of transmission errors.
Therefore, the chapter is structured into three parts:

Section 5.1 presents the framework of this thesis, i.e. it presents the ATM-Sat project [6] and its
aspects which influenced the simulation of TCP. Based on the project’s constrains, the scope of the
final simulations is defined. In Section 5.2, the reader is introduced to the applied simulation workflow,
starting from the analysis of the satellite constellation over the definition of an appropriate simulation
model of the link, up to the actual TCP evaluation. Finally, the simulation models are explained in all their
details (Section 5.3) and the parameters used in conjunction with these models are outlined (Section 5.4).
Finally, Section 5.5 summarizes the simulation results and evaluates them.

5.1 SCOPE AND CONTEXT OF CONDUCTED SIMULATIONS

The simulation of TCP over a LEO satellite link is embedded within the ATM-Sat project which "provides
methods for a new ATM-based communication technology for Low Earth Orbit (LEO) satellite systems".
[6] Thus, the scope of the simulation and constrains limiting the TCP flavors to be analyzed derive directly
from the project requirements.

The ATM-Sat project studies and designs an entire LEO, ATM-based satellite network to support
multimedia applications in a mobile environment. Besides the analysis of the IP-protocol suite, tasks
include the definition of an appropriate satellite constellation including inter satellite links and the de-
velopment of a MAC layer protocol supporting QOS guarantees. The final project stage envisioned a
proof on concept prototype of the system.

An aspect of the project is the possible commercial deployment of the system which directly influences
the constrains applied to the analysis of the IP-protocol stack. With respect to an assured data transfer,
the following assumptions apply:

• Only commercial, off-the-shelf operating systems are run on the (end) user terminal. Thus, a
satellite specific protocol stack is not available for end-user-applications.

• The end-to-end semantic of TCP has to be uphold, i.e. the user shall have the opportunity to
encrypt its data right above the network layer without suffering performance decrease.

These constrains directly limit the scope of the simulation.
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The simulation of Vanilla TCP and TCP Reno as the most widely spread TCP flavor is chosen. Even
though TCP SACK is very frequently evaluated when it comes to TCP-related performance issues, it
is not yet the state-of-the-art implementation (as of the time of the simulation runs) used by default on
a commercial off-the-shelf operating system. This limitation obeys to the first constrain. The second
restriction eliminates so called performance enhancing proxies which usually destroy the end-to-end
semantic of TCP or cannot cope with data encryption right above the network layer.

Providing an assured data transfer by an application on top of UDP is not considered either. Even
though UDP is not as prone to satellite specific network aspects as TCP (refer to Section 4.3) as it does not
employ any kind of flow control or retransmission algorithms, the functionality to acknowledge received
data had to be implemented on top of UDP which equals either an adapted protocol stack or an entire
new user application.

These constrains result in a performance analysis of TCP Reno and Vanilla TCP with respect to
parameters that can be tuned at the end-system without modifying TCP’s algorithms (thus maintaining a
standard-conform protocol stack). The parameters include TCP’s timer granularityG and the available
/ advertised buffer size. In particular, the following questions are subject of the work:

1. Does reducing the timer granularityG significantly improve TCP performance?

2. Is TCP’s timer capable to reflect a variable link delay?

3. How does the advertised receive buffer size effect TCP’s RTT approximation and performance?

4. How does the target system specific BER effect these aspects?

As to the authors knowledge, question number one has so far not been discussed for a variable delay
satellite environment. TCP’s ability to reflect a variable link delay in a satellite environment has only
been partially answered by Allmann [14] as only a standard timer granularity ofG = 500ms is evaluated.
The effects of an decreasedG in order to (possibly) increase TCP’s performance has not been studied
so far for satellite systems. These aspects are finally put into the context of different advertised buffer
sizes as the latter have usually an influence on queuing delays and might therefore have an influence on
results with regard to question one and two.

The analysis is carried out using a simulation based approach as neither an implementation of the MAC
protocol (whose development was also part of the ATM-Sat project) nor a project specific demonstration
/ simulation environment was available. In addition, focusing on a simulation driven approach does
not restrict analysis to happen in real-time. Instead of several weeks, the entire set of simulations was
finished after a few days (of continuous simulation runs).

5.2 SIMULATION WORKFLOW

The performance evaluation of TCP over a LEO satellite channel breaks down into two main simulation
steps: analyzing the target system’s satellite constellation and simulating TCP over a specific satellite
link. Accordingly, the simulation workflow incorporates two specialized simulation tools, namely STK
and Opnet Modeler. Figure 5.1 illustrates the resulting simulation workflow which includes auxiliary
tools. The latter allow an automatic exchange of satellite channel descriptions between STK and Opnet.
[32,34] The extension of this approach into anIntegrated Prototyping and Simulation Architecture for
Space Specific Protocol Developments and Verificationsis well documented by Emmelmann [36] and
not further discussed in this contents.

The simulation process starts with STK which is used to model the network in the sky focussing
on the mere constellation of each satellite. Parameters of the target system1, i.e. the orbit type and
altitude (Walker 72/12,h = 1350 km), are directly fed into the simulator in order to visualize the LEO
satellite network. Based upon this model, STK analyzes the satellites’ constellation with respect to the
time-varying distance between two satellites or between a satellite and an earth station, the change of the
elevation angle over the time, and the visibility of a particular satellite as seen from a ground station. The

1Please refer to appendix D for a complete list of the target system’s parameters.
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Fig. 5.1 Simulation Workflow and Interaction of used Toolsets [32,34])

simulation results can be retrieved from STK as an ASCII file containing the AER description (azimuth,
elevation, and range) of a specific communication path.

Following the simulation workflow, a C-based parser program automatically converts STK’s AER
description of a distinct communication path into corresponding c- and h-files which can later on be
included in a modified stage of Opnet’s transceiver pipeline. The modified pipeline stage allows a point-
to-point based (wired) communication link between two Opnet nodes to behave as if it were the satellite
channel previously analyzed with STK.2 The interested reader is referred to Appendix E for the source
code and a short description of the developed conversion program.

The actual simulation of TCP over the LEO satellite channel is conducted with Opnet. Channel
characteristics are encapsulated in a modified point-to-point link imposing a time-varying delay on data
packets. Additional simulation parameter, e.g. the bandwidth and profiles of data to be transmitted
via TCP, and the bit error characteristics of the transmission path, are directly fed into Opnet. Finally,
this model of a point-to-point, TCP-based communication link is used to compare the performance of
different TCP flavors over an erroneous LEO satellite channel.

5.3 SIMULATION MODELS

The following section will describe the simulation models developed within this work. The models are
either composed out of available standard components shipped with the corresponding simulation tool
or entirely developed from scratch.

Section 5.3.1 describes the model used along with the Satellite ToolKit STK to analyze the satellite
constellation as proposed within the ATM-Sat project. Based on this model, information, especially with
respect to the range in between two satellites and a satellite and an observer on earth, are gained. Further
on, the accuracy of the delay model is evaluated which yields to a simplified delay model. Finally, the
simplification is mathematically proven to be valid with respect to the scope of the analysis of TCP in a
variable delay environment.

2It should be noted that STK provides a native interface to Opnet which is restricted to the exchange of orbit descriptions of all
modeled satellites. Even though this approach allows Opnet to simulate a satellite network in its whole, it requires the usage of
wireless communication links within the Opnet model. The wireless link pipeline stage in turn requires to write a new model for
error allocation and correction, channel interference, and antenna characteristics. These pipeline stages can be omitted with an
appropriate analysis of the satellite channel which is later on reflected in the error characteristics of the simulated communication
path. These circumstances and the fact that the final simulation of TCP includes only a point-to-point communication plead for a
modified point-to-point link.
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Fig. 5.2 Path Tracks of considered LEO Satellite System

Section 5.3.2 provides an analytical delay model based on the orbit geometry and compares this delay
model with the one gained by STK based simulations.

Section 5.3.3 presents the simulation models used in conjunction with Opnet. The representation of
the satellite channel and the models to actually analyze TCP over an erroneous, variable delay satellite
channel are explained. Additionally, the reader is introduced to auxiliary simulation models which are
used to verify the proper functionality of the overall simulation system in order to gain confidence in the
simulation results.

5.3.1 STK Model

Model for AER Measurements The STK model describes the time-variant position of each satellite
in its orbit. The model is based on the following target system parameters:

• The LEO satellite communication network consists of 72 satellites.

• The satellites are evenly distributed among 12 orbits.

• Each orbit is inclined by47◦ and has an hight of 1350 km.

Figure 5.2 illustrates the path tracks of the resulting Walker 72/12 constellation. Based on this model,
STK determines the intra- and inter-orbital distance to a satellite’s next neighbor. In addition to the
satellites, the model includes a ground facility (Facility1) which is used to analyze the time-varying
distance between a satellite and a potential observer on earth.

Figure 5.3 illustrates all possible ISLs and highlights those deriving from a single satellite. Satellite
LEO063(i.e. satellite number 3 in plane number 6) has two ISLs in the same orbit: to satelliteLEO062
andLEO064. The distance reported by STK is constant (7727.985 km) which is an obvious result due
to the circular shape of each orbit. The range of the four ISLs to the satellites in the next adjacent
planes, i.e. to satelliteLEO072/LEO073andLEO052/LEO053, changes over the time from 3477.147 to
4482.404 km.

Whereas a satellite sees its next neighbors 24-hours a day, the communication path between a satellite
and a potential observer on earth is characterized by its limited availability. The satellite overpasses
the ground station three times a day and, in conjunction with a minimum elevation angle of20◦ as
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Fig. 5.3 ISLs to next neighbor in the same and left- and rightmost orbit plane

required by the target system specification, the access period is restricted to 12 minutes. After this time,
the ground terminal has to invoke a handover to the next available satellite. In a worst case scenario,
which is supposed to be a handover scheme resulting in the highest possible variation of the slant range,
the ground terminal invokes the handover when the satellite disappears at the horizon and switches to
the next upcoming satellite. As this kind of handover scheme results in a periodic repetition of the
experienced slant range, further simulations abstract from the actual handover and merely consider the
periodically repeated slant range characteristics of a single satellite’s overpass. The measured AER
(Access Elevation Range) data for a potential observer placed in the satellite’s nadir is plotted in Fig. 5.4.
The plot is restricted to a single access interval and shows how the slant ranges varies over the time in
between 2111.884 and 2698.502 km.

Accuracy of the Model and the Resulting Propagation Delay Two aspects influence the accuracy
of the measured AER data: the fact that STK reports AER data only every minute (of simulated real
time) which in turn imposes an uncertainty about the exact value of the current AER information in
between two measurements, and the improper manual placement of the ground facility in the satellite’s
nadir. The latter influences only the AER measurements of the up- and down-link delay and cannot be
numerically characterized whereas the influence of the measurement’s granularity of one minute imposes
the following error:

Let rt be the reported slant range at time t,4rt+ε be the maximum deviation of allrt+ε from rt within
[t, t+1], andδrt+ε be the maximum relative deviation (see Fig. 5.5). Then, according to the fact thatrt

is strictly monotonic over[t, t+1], the deviation and slant range is given by

4rt+ε = rt − rt+1 (5.1)

rt+ε ∈ [rt −4rt+ε, rt] (5.2)

δrt+ε =
∣∣∣∣4rt+ε

rt

∣∣∣∣ (5.3)

According the reported AER data, the error of the up- and down-link delay has an upper bound of
308.258 km (δrt+ε ≤ 14.57 %). The error of the ISL range to the next orbit is below 56.07 km (δrt+ε ≤
1.44 %); the slant range of the ISL within an orbit is constant and thus4rt+ε → 0.
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Fig. 5.4 AER Graph for Ground Facility to Satellite Connection
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Based upon the measured slant range, the propagation delaydt and its relative error are given by

dt =
rt

c
(5.4)

δdt ≤ δrt+ε (5.5)

wherec is the speed of light. Figure 5.6 plots the propagation delay for intra- and inter-orbital ISLs as
well as for the up- and down-link. The graph linearly interpolates values ofdt in betweent andt+1.

End-To-End Propagation Delay of Satellite Link The overall end-to-end delaydend2end is given by
the addition of numerous ISL delaysdISLs to the up- and down-link delaydup andddown.

dend2end = dISLs + dup + ddown (5.6)

Assuming that a signal’s transmission starts at the timet and that the signal is routed from satellite A to
satellite C via an intermediate satellite B, the transit time from A to B has to be taken into account when
the delay for the ISL B–C is computed, i.e.:

dA→B→C(t) = dA→B(t) + dB→C(t + dA→B(t)) (5.7)

Measurements show that for any route the ISL delayd has only a neglectful influence on a possible
consecutive ISL delayd∗, i.e.∧

t,ε

((O (dISL(t)) = O(ε))⇒ (d∗ISL′(t) ≈ d∗ISL′(t+ε))) (5.8)

and hence, Eq. (5.6) can be approximated as

dend2end ≈ p dintraISL︸ ︷︷ ︸
=const.

+ q dinterISL + dup + ddown︸ ︷︷ ︸
variant over the time

(5.9)

The number of intra- and inter-orbital ISLsp andq depends on how the satellite network routes the
connection. If we assume that the network applies shortest-path optimization to its routes,p andq have
an upper bound for any satellite network with a Walker constellation. As the target system regularly
distributes 72 satellite over 12 orbits, any route may not consist of more than 3 intra-orbital ISLs (reach
the satellite in the same plane at the other side of the earth) or 6 inter-orbital ISLs (reach the orbit which
is the farthest away).

Simplificaton of the Propagation Delay Model The end-to-end propagation delay given in Eq. (5.9)
describes all possible routes containing any pair(p, q) of intra- and inter-orbital ISLs. The simulation
of TCP over every possible combination ofp and q is by far too complex. Thus, the route which
suspectedly results in an end-to-end delay with the most significant influence on TCP (with regard to the
delay’s variability) is determined for further simulations.

Any ISL within the same orbit adds only a constant delay todend2end. As TCP’s timer is well able to
reflect constant propagation delays, further simulation models neglect the propagation delay caused by
intra-orbital ISLs. The remaining addends are further analyzed with respect to their variability to exploit
their possible affects on TCP.

The frequency of the inter-orbital ISL delay is by one magnitude smaller than the one of the up- and
down-link (finterISLdel = 0.297619 mHz as compared tofupDel = fdownDel = 1.388889 mHz) and
may at least be neglected if the satellite link only consisted of a single inter-orbital ISL. This simplification
also holds with regard to the delay’s derivation as Fig. 5.7 illustrates.

The further discussion will show that the inter-orbital ISL delay may be neglected with regard to the
up- and down-link delay as any combination of inter-orbital ISL delays

• does not significantly increase the maximum derivation of the resulting delay and

• does not increase the frequency of the resulting delay compared to each addend.

Even though the inter-orbital delay is in the same order as the up- and down-link delay (O(dinterISL) =
O(dup))) and might even outscore the latter for several consecutive inter-orbital ISL links, it can be
ignored for an analysis of TCP with its focus on the influence of the delay’s variability.
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The derivation of the sum of two inter-orbital ISL delays3 d andd∗ is given by4

d ≡ dinterISL

dsum
def
= d + d∗ (5.10)

d′sum
def
= dsum

d

dt
= (d + d∗)′ = d′ + d′∗ (5.11)

Hence, the highest possible maximal derivationmax d′sum occurs if the cross correlation function
(rdd∗(τ)) reaches its maxima.

rdd∗(τ) def=
∫ −∞

+∞
d(t) d∗(t+τ) dt (5.12)

This is true if the phase shiftϕ is according to Eq. (2.29) a multiple of the delay’s period, i.e. ifd andd∗

directly overlap each other:∨
τ

∨
n∈N0

(
(rdd∗(τ) = max rdd∗(·))⇒ (ϕ := τ = n TinterISL = n

Torbit

2
)
)

(5.13)

The relation betweenTinterISL andTorbit is given by the nature of the inclined Walker orbit itself: Each
orbit has two intersections with its next neighbor orbit (one for the ascending and one for the descending
node). Thus the inter-orbital ISL delay’s period is only half of the orbit period.

Eq. (5.13) also holds if instead of the delayd andd∗ the delays’ derivationsd′ andd′∗ are considered.
As the number of of inter-orbital ISLs is strictly limited byq ≤ 6, the relative change of the resulting
overall delay does not dominate over the up- and down-link delay variation:

(q ≤ 6)⇒ O

(
q ∗ d′interISL

dinterISL

)
≤ O

(
d′up

dup

)
(5.14)

Figure 5.8 illustrates this fact: In logarithmic scale, adding several derivations of delay functions which
are in phase, results in an upward shift of the function itself.

The amplitude spectrum of the frequency of the overall inter-orbital ISL delay (|F {dinterISLsum(t)}|)
is independent of the addends’ phase shift (ϕi) except for a factori representing the weight of each spectral
frequency. The spectral analysis [61] is given by:5

dinterISLsum(t) =
∑

i

d∗i (t) =
∑

i

d(t−ϕi) (5.15)

F {dinterISLsum(t)} = F

{∑
i

d(t−ϕi)

}
(5.16)

=
∑

i

F {d(t−ϕi)}

=
∑

i

F {d(t)} e−jωϕi

= F {d(t)}
∑

i

e−jωϕi

|F {dinterISLsum(t)}| =

∣∣∣∣∣F {d(t)}
∑

i

e−jωϕi

∣∣∣∣∣ (5.17)

= |F {dinterISLsum(t)}| ·

∣∣∣∣∣∑
i

e−jωϕi

∣∣∣∣∣
3The discussion focuses on two inter-orbital addendsd andd∗ for simplicity. If the satellite link contains more than two inter-orbital
ISL, we can perform an iteration starting with the proof for two addendsd andd∗ which results in a functiondsum := d + d∗.
The resultdsum can than be compared tod∗∗ etc.
4For simplicity, we abbreviatedinterISL with d in some formulas.
5F{d(t)} denotes the Fourier transformation ofd(t) which is given byF{d(t)} :=

∫ +∞
−∞ d(t)e−jwt dt
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≤ |F {dinterISLsum(t)}| ·
∑

i

∣∣e−jωϕi
∣∣

= |F {dinterISLsum(t)}| ·
∑

i

|cos(ωϕi)− j sin(ωϕi)|

= |F {dinterISLsum(t)}| ·
∑

i

√
cos2(ωϕi) + sin2(ωϕi)︸ ︷︷ ︸

=1

= i |F {dinterISLsum(t)}| (5.18)

The frequency ofdinterISLsum(t) cannot be larger than the largest frequency of all contributing har-
monics. Thus, the frequency of the overall inter-orbital ISL is according to the measurements at least
one magnitude smaller than the frequency of the up- and down-link delay.∧

ϕi

O(finterISLsum) ≤ O(finterISL) < O(fup) (5.19)

As a final result, Eq. (5.14) and (5.19) prove that the delay model can be reduced to the mere up- and
down-link delay if the affects of the variability of the delay on TCP performance is the subject of further
simulations.

5.3.2 Analytical Orbit Model

For validation purposes, the simplified STK model is compared to an analytical model of the up- and down-
link delay. The analytical model directly results from the geometry of the given Walker constellation (ref.
to Section 2.1.2) and returns the propagation delay associated with a link as a function of the simulation
time. As the visibility of a satellite is limited to approximately 12 minutes, the delay is derived from the
slant range as given in Eq. (2.23) and periodically repeated.6 This models approximates the handover

6The satellite is assumed to pass through the observer’s zenith att = 6 min.
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which occurs when one satellite disappearing at the horizon passes all its connections to the satellite
which is just about to appear in the ground station’s visibility range. The analytical delay is therefore
mathematically described by

delay(t) =

√
R2

e + r2 − 2Rer cos (2π
12 ((t mod 12)− 6))

c
(5.20)

Figure 5.9 plots the analytical delay model against the STK based delay measurements. Both models
return delays which differ less than 7% at any timet. This is almost half of the relative error calculated
in Eq. (5.3) for the up- and down-link delay derived from STK. The relation between the two results is
given by the fact that Eq. (5.2) is based on a "sample and hold" approximation of intermediate delays
whereas the plot in Fig. 5.9 linearly interpolates in between the samples gained from STK’s AER analysis.
Additionally, STK might employ a rather complete simulation model considering more than the mass of
the earth and the satellite, i.e. STK might not limit the analysis to a simple two-body problem as done
for the analytical approach.

Lemma:Eq. (5.20) defines the periodic repetition of the delay signal based on the analytical model.
As STK’s AER analysis reports a sample every minute, we obtain at least 12 samples of STK’s delay
approximation and can thus use these samples to guess intermediate values. For simplicity, either a
"sample and hold" method or linear interpolation is applied. This approximation is sufficient as a better
interpolation based on a Fourier series does not yield in significant improvements. The interested reader
is referred to Appendix 1 for further details. •

5.3.3 Opnet Models

The evaluation of TCP over an erroneous, variable delay LEO satellite channel is carried out with
the Opnet Modeler simulation tool. General modeling concepts and terminologies were previously
introduced in Section 3.2.2 which leaves the focus of this section on the simulation models which were
developed as a part of this thesis, namely a model describing the satellite channel (Section 5.3.3.1) and
a model which is actually used to analyze TCP’s performance (Section 5.3.3.2).
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The model of the satellite channel consists of a modified point-to-point link imposing the character-
istics of a satellite channel on data being forwarded. The paragraph reasons why the simulation may
abstract from a wireless link model and explains the modifications of the standard (wired) pipeline stage
procedures. Finally, two network nodes which can be used to verify the proper functionality of the
modified pipeline stages are introduced.

The simulation model used to analyze TCP will be shown to consist of standard network compo-
nents (especially network nodes) which are connected via the new developed satellite link model. As
the simulation model consists in its whole of several experiments each focussing on a different sim-
ulation parameter (e.g. TCP flavor, timer granularity, etc.), experiments are hierarchically grouped in
subnetworks.

5.3.3.1 Model of the Satellite Channel Opnet comes with a native interface in order to model
satellite channels (ref. to Section 3.2.2): Orbit path parameters for each satellite may be imported
from STK thus resulting in "moving network nodes in the sky". These nodes may then be equipped
with a wireless transceiver in order to communicate with each other and with (wireless) nodes on the
ground. As this modeling approach requires the usage of the radio link transceiver pipeline [3], at least
an exact definition of the following network components and characteristics had to be implemented in
each corresponding pipeline stage:

• antenna gain of transmitting terminal,

• antenna gain of receiving terminal,

• background noise and interference noise definition,

• error allocation according to the received signal to noise ratio, and

• error correction according to the used FEC scheme.

Additionally, this approach requires an implementation of a "tracking and pointing" algorithm to find a
satellite in the sky and to track the latter’s movements. The only advantage of this modeling concept is
its ability to model an entire satellite network (several nodes in the sky) and to include handovers. This
in turn requires an exact description of the underlying MAC protocol in order to gain valuable results
with respect to a TCP/IP analysis.

The focus of this simulation is to analyze how prone TCP is to the variability of the propagation delay.
STK based simulations of the considered satellite network show that the variability is clearly dominated
by the up- and down-link delay. Additionally, the error model described in 2.2.2 provides a constant
end-to-end specific bit error rate after applying FEC which does already imply antenna characteristics
and channel noise. Therefore, a (wired) point-to-point transceiver pipeline with a modified propagation
delay stage is used instead of its wireless counterpart to model TCP connections.

Opnet’s Point-to-Point Pipeline Stage Architecture Every packet7 being transmitted from one node
to another is passed to a pipeline stage architecture which simulates the physical characteristics of the
transmission channel. For a (wired) point-to-point link, this architecture consists of four stages:

1. transmission delay,

2. propagation delay,

3. error allocation, and

4. error correction

Figure 5.10 illustrates the execution sequence of each different stage.
The transmission delay stage is invoked immediately upon beginning transmission of a a packet, in

order to calculate the amount of time required for the entire packet to complete transmission. This result

7Even though Opnet speaks of packet oriented communication, a bit- or byte-stream can also be transmitted for a packet length of
one bit / byte.
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Fig. 5.10 Opnet’s Point-to-Point Link Transceiver Pipeline Execution Sequence for one Transmission [3]

can be thought of as the simulation time difference between the beginning of the transmission of the first
bit and the end of transmission of the last bit of the packet. Thus, the transmission delaydtransdepends
only on the packet lengthl and the channel’s bandwidthb:

dtrans =
l

b
(5.21)

After this time has elapsed, the interface may immediately transmit another pending packet.
The propagation delay stage is invoked after the return of the transmission delay stage with no

simulation time in between. The purpose of this stage is to calculate the amount of time required for
the packet’s signal to travel from the link’s source to its destination. As this time depends on the slant
range in between ground station and satellite at the time of transmission, this pipeline stage is later on
modified to reflect the delay characteristics of the satellite link.

The error allocation stage is called in third place; its execution does not consume simulation time.
The error allocation stage estimates the number of bit errors based upon the implemented error scheme
and corrupts the packet accordingly. Hence, this pipeline stage will later on embody the error model
described in Section 2.2.2.

The error correction stage corrects any corrupted packets and forwards them afterwards to other
modules in the receiving node. Thus, this stage depends on the ability of an employed FEC scheme to
correct corrupted packets. [3]

Modification of Standard Pipeline Stage Procedures For the simulation of the given satellite chan-
nel, the propagation delay stage shipped with Opnet (txdel model) is kept. During the simulation, the
standard error allocation model (error model) is initialized to corrupt packets with a constant bit error rate.
This method is valid for an appropriately chosen FEC scheme if the ground terminal is not shadowed.
Shadowing is not considered, as it cannot be compensated with FEC and would therefore correspond
to a link failure making any kind of communication impossible. [38,39] The error correction stage is
simply initialized to a null-function as the error allocation model does already reflect the capability of the
implied FEC scheme to correct errors. This leaves the focus on a new implementation of the propagation
delay model.

The new point-to-point propagation delay model is able to calculate

• a constant propagation delay based on the distance in between sender and receiver,

• a variable propagation delay based on a mathematical model of the satellite link’s slant range, and

• a variable propagation delay based on a previous analysis of the communication path with STK.

Opnet’s simulation kernel requires that the propagation delay stage procedure accepts a packet address
as its sole argument. When the propagation delay pipeline stage exits, the simulation kernel expects the
computed propagation delay to be assigned to the packet’s transmission data attribute (TDA) represented
by the symbolic constant OPCTDA PT PROPDELAY. [3] In order to calculate the propagation delay,
the object ID of the link carrying the packet is extracted from the packet’s TDA. Afterwards, the link is
probed to determine the delay that the user has specified during simulation runtime. The value of the
delay may indicate that the pipeline stage has to compute the actual value (i.e. if the value equals to a
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special constant which was previously defined) or is considered as a fixed delay associated with the link.8

If the user chooses a non-constant delay type, the pipeline stage model either invokes the standard Opnet
function link delay() to calculate the distance based delay, calculates the delay based on a mathematical
model, or calls the function getstk delay() to determine the delay according to a STK analysis.

#define DISTANCE BASED 1E+15
#define ISS MAXVAR CST 999999003
#define ATMSAT LEO 1E+16
void gmd vardelay dpt propdel (Packet *pk) {

double prop delay;
/*

* extract required information from packet
*/

/* Obtain object id of link carrying transmission. */
link objid = op td get int (pkptr, OPC TDA PT LINK OBJID);
/* Obtain propagation delay associated with that link. */
op ima obj attr get (link objid, "delay", &prop delay)

/*
* perform calculation of propagation delay (override the
* delay if it contains a special value)

*/
if (prop delay == DISTANCE BASED) {

prop delay = link delay(link objid);
}
if (prop delay == ATMSAT LEO) {

prop delay = op sim time();
/* save the "type conversion" difference */;
x = prop delay - (long) prop delay
prop delay = (long) prop delay % 720;
/* add the difference lost due to type conversion */
prop delay += x;
/* phase shift to assure user in satellite’s nadir at t=0)
prop delay -= 360;
x = 2 * M PI * prop delay / 6762 ;
prop delay = sqrt(6.37*6.37+7.72*7.72-2*6.37*7.72*cos(x))/3E2;

}
if (prop delay == ISS MAXVAR CST) {

prop delay = get stk delay( op sim time(), iss maxVar );
}
/*

* Other STK based delay patterns are omitted here.
* The entire source code can be found
* in Appendix F.

*/
/*

* place result in TDA to return to simulation
* kernel

*/
op td set dbl (pk, OPC TDA PT PROPDELAY, prop delay);

}

Some uncommon calculation methods were necessary to determine the propagation delay according
to the mathematical model given in Eq. (5.20). Opnet’s simulation kernel is unable to perform a modulo
operation on a variable of the type double. Therefore, the simulation time has to be converted to type long
and afterwards converted back to its original type, i.e. double. The conversion process is not loss-less.
Thus, the difference between the original and converted simulation time is saved and in the end added to
the result of the modulo operation.

In addition to the variable propagation delay of the considered LEO satellite constellation, the pipeline
stage procedure may return the delay of various other satellite constellations based upon previous STK
analyzations. These constellations are implemented to verify the simulation model against the results
obtained by Allman et al. [14] In order to return a delay according to the AER data as in Eq. (5.5),

8The graphical user interface (GUI) hides this handling from the user. The latter may either choose a symbolic name if a variable
or distant based delay is wished, or may specify a constant delay associated with the link. As Opnet’s simulation kernel is not able
to pass symbolic names in between the GUI and the pipeline stage model, the definition of special values for each type of variable
delay is needed.
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Fig. 5.11 Node Model of the LinkVerification Node

the current simulation time and a structure with the pre-computed delays are passed to the function
getstk delay(). The latter reduces the simulation time to be within the delays’ period and retrieves the
current delay from the lookup table. This behavior corresponds to a "sample and hold" interpolation of
the pre-calculated delays and is therefore affected with the error given in Eq. (5.3). The source code
of the lookup function as well as the definition of the delay tables passed to getstk delay() are given in
Appendix F.

Supporting Network Nodes for Verificaiton Purposes The implementation of the link model to
reflect the variable propagation delay behavior of a satellite channel consists of several development
steps and is thus, by nature, prone to implementation error. Therefore, the simulation process includes
a method to verify the behavior of the final link model.

In order to test the just developed satellite link, packets with the least possible protocol overhead
are forwarded over the link. The delay in between sending and receiving the packet as well as the
utilized bandwidth can be measured accordingly. In order to conduct these tests, a network node type
gmdlinkverificationis implemented.

The internal structure of the network node, depicted in Fig. 5.11, consists of a point-to-point receiver
and transmitter (ptrec and pttrans) which are directly connected to the node’s main process. The latter’s
mere porpuse is to transmit and receive (raw) data packets.9 The transmission may be characterized
during simulation runtime in terms of the packet length, transmission rate, and the duration of packet
transmission. The process instantaneously accepts any packet arriving on the receiver. Upon arrival, the
packet’s creation time stamp is evaluated to calculate the encountered transmission delay and the packet
is destroyed.

9The term "raw data packet" indicates that the actual format, i.e. the meaning of the bits within the packet, is irrelevant at this time
and is therefore not model except for the packet ’slength.
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Fig. 5.12 Process Model of the LinkVerification Node

Figure 5.12 illustrates the internal stages of the main process. As soon as the simulation starts, the
INIT state is entered and internal variables as well as pointers to record any statistics associated with this
node are initialized. If the user configured the node to start generating traffic, the first interrupt of the
name GENNEW PKT is scheduled.

/* Define constands used in the process model */
#define GEN NEWPKT 10
/* Function Declarations */
static void gmd linkverification sv init ();
/** state (INIT) enter executives **/
FSMSTATE ENTERFORCEDNOLABEL (1, "INIT",

"gmd linkverification () [INIT enter execs]")
{
/* Initilaize the statistic handles to keep */
/* track of traffic sinked by this process. */
gmd linkverification sv init () ;

/* schedule the first packet to be sent */
/* start time is set to -1 if we do not want to generate traffic */
if (start time >= 0.0)

{
op intrpt schedule self (op sim time () + start time, GEN NEWPKT);
}

}

Afterwards, the finite state machine (FSM) enters its IDLE state and waits for an interrupt to occur. The
following events may at least trigger an interrupt: the receiver causes an interrupt to indicate a packet’s
arrival, the node sends itself an interrupt after the timer elapses, or another node directly addresses an
interrupt to this node. If an interrupt occurs, the FSM exits the IDLE state and determines upon exit the
type and the code of the interrupt. Afterwards, the transition conditions are evaluated to determine the
next state. Due to the order in the switch-statement, priority is given to sending packets.

/* State transition macro definitions */
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#define SEND PKT (intrpt type == OPC INTRPT SELF
&& intrpt code == GEN NEWPKT)

#define PKT ARRIVAL (intrpt type == OPC INTRPT STRM)
/** state (idle) exit executives **/
FSMSTATE EXIT UNFORCED (3, "idle",

"gmd linkverification () [idle exit execs]")
{
/* Determine the type of interrupt. */
intrpt type = op intrpt type ();
intrpt code = op intrpt code ();
}

/** state (idle) transition processing **/
FSMINIT COND (SENDPKT)
FSMTEST COND (PKTARRIVAL)
FSMDFLT COND
FSMTEST LOGIC ("idle")
FSMTRANSIT SWITCH

{
FSMCASETRANSIT (0, 2, state2 enter exec, ;, "SEND PKT",

"", "idle", "send")
FSMCASETRANSIT (1, 0, state0 enter exec, ;, "PKT ARRIVAL",

"", "idle", "receive")
FSMCASETRANSIT (2, 3, state3 enter exec, ;, "default",

"", "idle", "idle")
}

}

As the definition of the transition macros shows, the event SENDPKT occurs if the process sends
itself an interrupt and if this specific interrupt is of the kind GENNEW PKT; the receiver indicates a
pending packet in its queue with the interrupt type OPCINTRPT STRM.

As soon as the FSM enters the SEND state, a new packet is created. The size of the packet is determined
by the user’s specification at simulation run time. As this specification might be the definition of a packet
size distribution with a given probability, the size has to be calculated for each new packet. Finally, the
packet is send to the stream connected to this module (i.e. to the transmitter, refer to Fig. 5.11) and a new
interrupt is scheduled to create the next packet. Again, the inter-arrival time is determined according to
a time distribution specification provided by the user during runtime.

/** state (send) enter executives **/
FSMSTATE ENTERFORCED (2, state2 enter exec, "send",

"gmd linkverification () [send enter execs]")
{
/* Create a packet using the outcome of the loaded */
/* distribution. */

pk size = oms dist outcome (packet size dist handle);
pkptr = op pk create (pk size*8);

/* This is the point at which to create statistic about */
/* sent packets */
/* to be filled */

/* Send the packet on the stream connected to this */
/* module. */
op pk send (pkptr, 0);

/* schedule an interrupt in order to create the next */
/* packet if the stop time is not reached */
if ((stop time < 0.0) || (stop time > op sim time () ))

{
intarrvl time = oms dist outcome (intarrvl time dist handle);
op intrpt schedule self (op sim time () + intarrvl time, GEN NEWPKT);
}

}

Finally, if a packet has arrived and the RECEIVE state is entered, the process obtains the incoming
packet from the stream that caused the interrupt and calculates the size of the received packet as well
as the end-to-end delay. Afterwards, the process records local and global statistics (i.e. the end-to-end
delay, erroneousness of the packet, etc.) and finally destroys the packet.

/** state (receive) enter executives **/
FSMSTATE ENTERFORCED (0, state0 enter exec, "receive",

"gmd linkverification () [receive enter execs]")
{
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/* Obtain the incoming packet. */
pkptr = op pk get (op intrpt strm ());

/* Caclulate metrics to be updated. */
pk size = (double) op pk total size get (pkptr);
ete delay = op sim time () - op pk creation time get (pkptr);

/* Update local and globel statistics. Source code is omitted here.
Please refer to Appendix F */

/* Destroy the received packet. */
op pk destroy (pkptr);
}

5.3.3.2 TCP Simulation Model The Opnet simulation model consists of several hierarchically
placed network-clouds. These networks are not relevant to the simulation itself but are merely used to
group the experiments by their simulation parameters. Figure 5.13 illustrates the network hierarchy:
At its top level, the definition and parameter of TCP based applications and their execution profile is
placed.This definition is later on simultaneously used by all nodes in this simulation to start TCP-based
data transfers. The network could in the top level merely groups all experiments. The first sub level
divides the experiments in groups with the same minimum retransmission timeout (RTOmin). For each
of this group, the second level sets the size of the TCP connection’s receive buffer, and finally, the third
sub-level assigns different timer granularities for the specific experiment. Thus, each simulation model
contains

ntotal = nRTOs · nrecBuffer · ntimerGran (5.22)

different experiment sets wherenRTOs, nrecBufffer, andntimerGran denote correspondingly to the
number of different RTOs, receive buffer sizes, and timer granularities in each sub-network. As all
experiments in a single simulation model refer to the same TCP flavor and all links in the model impose
the same bit errors on the traffic, the simulation model is duplicated for each TCP flavor and bit error
rate to be evaluated.

Network Nodes The actual simulation takes place in the most bottom network level which contains two
client nodes, a server node, and an IP network cloud (Fig. 5.14). The client node is configured to execute
the application profile defined in the top-level network hierarchy, i.e. to run the actual experiments. It
communicates via a point-to-point link with the network cloud to which the server is connected using
the modified pipeline stage architecture representing the LEO satellite link. The IP network could in
the middle is necessary in order to connect other computers to the network. These additional computer
may start competing TCP connections to evaluate the fairness of TCP over the satellite link.10 It should
be noted that the links in between the IP network cloud and the two clients do not impose an additional
delay on the traffic nor does the IP could cause traffic to be lost or corrupted.

Application and Profile Definition The experiment, i.e. the kind of data transfer in between client and
server, is defined for all bottom-level networks via the application and profile definition functionality
(Fig. 5.15). The application definition contains only a single description, namelyFTPtransfer. This
definition describes a single FTP transfer of a 250 MB file from the server to the client.

The profile definition contains information on how often and at which time a certain application is
invoked. For this simulation, a profile is specified which starts the applicationFTPtransferright after
the simulation has started.

5.4 SIMULATION SETTINGS

The scope of the simulations is limited to TCP’s ability to reflect a variable propagation delay with its
internal timer structures and how a reduced timer granularityG effects this ability. In addition, the simu-
lations should reveal if TCP’s performance in terms of throughput can be improved by reducing the timer
granularity in an erroneous environment. Besides, the effect of different advertised receive buffer sizes
on the RTT measurement and throughput are subject of this analysis. Therefore, the following sections

10This simulation aspect is not considered within this work. Therefore the BGTraffic node is simply disabled.
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Fig. 5.13 Network Hierarchy of Opnet Simulation Model
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Fig. 5.14 Network Nodes for TCP Analysis

Fig. 5.15 Profile and Application Definition
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Fig. 5.16 Testing Scenario of the Packet-Source-Sink Node

will specify the simulation settings used to answer these questions and to verify the used simulation
models themselves.

Section 5.4.1 focuses on the simulation settings used to assure a proper functionality of the new
implemented satellite link model (modified point-to-point pipeline stage) by transmitting raw data packets
over the link. This simulation setting is apart from the actual TCP evaluation. Afterwards, Section 5.4.2
names the simulation parameters applied to evaluate TCP with respect to the framework of this thesis.

5.4.1 Verification of Simulation Model

Five experiments are conducted to verify the proper behavior of the developed point-to-point pipeline
stage. For these experiments, the newly developed "supporting network node" (ref. to Section 5.3.3.2)
were used. The first experiment checks the functionality of the node itself; other verify the bandwidth
limitations and the variable delay of the newly developed point-to-point link model.

Verification of Supporting Network Nodes Two instances of the network node described in Sec-
tion 5.3.3.1 are connected with each other via a 32.768 Mbit/s, point-to-point link (Fig. 5.16). The first
node (source) sends 200-byte-long packets with a data rate of 128 packets/s. After ten minutes, the
source node stops sending packets. The second node (sink) is configured to receive any arriving packets
and to destroy them, i.e. the backward channel is not utilized.

As the source node sends with 2.048 Mbit/s, the following behavior is expected if the model works
properly:

• The throughput on the forward channel should be 2.048 Mbit/s (6.25% utilization).

• The throughput on the reverse channel should be zero.

• The utilization of the forward channel should drop to zero right after the source stops its transmis-
sion (i.e. after ten minutes).
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Fig. 5.17 Testing Scenario of Mobile User Bandwidth

Bandwidth Verification According to the target system specification (ref. to Appendix D), the satellite
channel provides a bandwidth of either 384 kbit/s, 2.048 Mbit/s, or 32.768 Mbit/s depending on the kind
of link, i.e. a link to a mobile user terminal, a fixed terminal, or to the network provider. [18] To verify
the bandwidth limitations, the source is configured to send 2000-byte-long packets with a rate of 4096
packets/s (64 Mbit/s required bandwidth). The transmission is stopped after one second for the mobile
link, after ten seconds for the fixed terminal link, and after five minutes for the provider link.

The link is expected to show an utilization of 100% throughout the transmission. The node configured
as a packet sink should record packets arriving at a constant rate which should correspond to the bandwidth
limitation of the link.

Figure 5.17 illustrates the scenario for the mobile link. Illustrations of the scenario checking on the
fixed and the provider link are omitted.

Variable Propagation Delay Finally, the source node is configured to send a constant-rate bit-stream
of 16 kbit/s over a provider link (32.768 Mbit/s available bandwidth, refer to Fig. 5.18). The time in
between the packet’s creation and reception is recorded by the sink node and should thus reflect the
variable propagation delay of the link.

Additional delay measurements are conducted. For these measurements, the link is configured to
impose variable propagation delays referring to different satellite constellations. These constellations
correspond to those used by Allman et al; they are evaluated to verify that the simulation model used for
this work is comparable with the one described in [14]. Table 5.1 provides an overview of the analyzed
delays; measurement results are depicted in Appendix B.

5.4.2 Analysis of TCP

The simulation settings to evaluate TCP are threefold: First experiments focus on TCP’s ability to reflect
a variable delay of a satellite link. Accordingly, Section 5.4.2.1 describes the applied algorithm of TCP
to determine its RTO. Afterwards, the parameters of file transfer experiments utilizing different receive
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Fig. 5.18 Testing Scenario of Variable Propagation Delay

Table 5.1 Summary of Analyzed ISL Propagation Delays

ISLa Period Illustration

ATM-Satb 12 minutes Fig. B.1
Cobec 62 minutes Fig. B.2
Cobed 3.7 hours Fig. B.3
International Space Station ISSc 54 mintutes Fig. B.4
International Space Station ISSd 60 minutes Fig. B.5
Lageosc 3.5 hours Fig. B.6
Lageosd 8.4 hours Fig. B.7
Navstar n/ae Fig. B.8
Radcalc 61 minutes Fig. B.9
Radcald 3.77 hours Fig. B.10

a All ISLs are named with respect to TDRSS-5.
b The ATM-Sat LEO satellite delay not an ISL delay but the associated up- and down-link delay.
c Consider is the access interval which results in the maximal variation of the delay.
d Consider is the access interval which results in the minimal variation of the delay.
e Periodic repetition not necessary as Navstar has a 24-hour visibility from TDRSS-5.
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Table 5.2 Verification of TCP Timer Computation — Simulation Parameters

Scope Parameter Value

Application Profile and Definition FTP 100% get-commands
Inter-request time 90,000 seconds

Transferred File Size 400 MByte
TCP Settings Timer Granularity "not used" (i.e. none)

Max. Segment Size 536 Byte
Rec. Buffer Size 3300 Byte
Max. ACK Delay 200 msec

Slow Start Initial Count 1
Initial RTO 1 sec
Min. RTO 1 msec
Max. RTO 64 sec
RTT Gain 1 (1st experiment)

0.125 (2nd experiment)
Deviation Gain 0.25

RTT Deviation Coefficient 4

buffer sizes are given in Section 5.4.2.2. Finally, Section 5.4.2.3 specifies the bit error rates that are used
to repeat all experiments in an erroneous environment.

5.4.2.1 TCP Timer Analysis Opnet’s TCP implementation tracks the variance of the RTT mea-
surements in addition to the smoothed RTT in order to calculate the RTO (ref. to Section 4.1.3.1). As
described by Jacobson [50], each of the following equations is applied to the current RTT measurement
M

Err = M −A (5.23)

A ← A + g · Err (5.24)

D ← D + h · (|Err| −D) (5.25)

RTO = A + 4 ·D (5.26)

whereA is the smoothed RTT andD is the smoothed mean deviation.Err is the difference between the
last recent segment’s RTT measurement and the current RTT estimator. [73]

The first simulations with respect to TCP focus on the latter’s ability to measure the variable prop-
agation delay. As Opnet does only report the smoothed RTTA, the experiment is twofold: In the first
experiment, the gaing for the smoothed RTT is set to 1 in order to have Opnet report the measured
segment’s RTT. In a second experiment,g andh are set to their standard values of 0.125 and 0.25
correspondingly. The timer granularity is set to none, i.e. Opnet does exactly calculate the segment RTT.

The experiments include the measurement of the RTO as well. Therefore, the lower bound of the
RTO is set to 1 msec to have the measurements reflect the calculated RTO. Table 5.2 summarizes the
simulations parameters. The file to be transferred via FTP is large enough to allow TCP’s timer an
estimation of an entire delay’s period. The receive buffer is reduced to 3300 byte to avoid that the
queuing delay dominates the time measurements which might be the case for a saturated link.

5.4.2.2 Variation of Receive Buffer Size and Timer Granularity A second set of simulations
focuses on different advertised receive buffer sizes and different TCP timer granularities. Both variables
might effect TCP’s ability to estimate the variable link delay: The buffer size determines the link’s
saturation which in turn might result in different queuing delays, whereas the timer granularity determines
the accuracy of TCP’s RTT estimation. An inaccurate estimation might cause TCP’s retransmission
timeout mechanism to trigger prematurely which in turn imposes unnecessary network load (ref. to
Section 4.1.3.1).

Several receive buffer sizes are evaluated ranging from the maximum segment size (MSS) up to a
multiple of the bandwidth delay product (BDP). For each of these buffer sizes, TCP’s timer granularity
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Table 5.3 Effects of Receive Buffer Size and TCP Timer Granularity — Simulation Parameters

Scope Parameter Value

Application Profile and Definition FTP 100% get-commands
Inter-request time 90,000 seconds

Transferred File Size 250 MByte
TCP Settings Receive Buffer Sizes 1460 Byte (MSS Size)a

3300 Byte (1/2 BDP)
6600 Byte (BDP)

64000 Byte
Timer Granularity adjusted to avoid false

retransmissionsb

Max. Segment Size 1460 Bytea

Max. ACK Delay 200 msec
Slow Start Initial Count 1

Initial RTO 1 sec
Min. RTO 1 msec
Max. RTO 64 sec
RTT Gain 0.125

Deviation Gain 0.25
RTT Deviation Coefficient 4

a Typical LAN based MSS minus 40 Bytes for the IP header.
b The timer granularity is adjusted in steps of 1 ms.

is altered in steps of 1 ms in order to determine the lowest possible granularity which does not cause
premature retransmissions. Table 5.3 summarizes the simulation parameters.

5.4.2.3 Introduction of Bit Errors A fine timer granularity makes TCP more sensitive to changes of
the segment RTT and thus allows a best possible calculation of the RTO. The RTO should approximate the
arrival time of a segment’s ACK in a best possible manner to determine the earliest possible retransmission
time of a lost segment but must not cause TCP to trigger premature retransmissions if a segment is slightly
delayed due a regular change in the RTT (ref. to Section 4.1.3.1). Therefore, further experiments
concentrate on the effects of various bit error rates on TCP’s ability to reflect the variable link delay, to
avoid false retransmissions, and to uphold good performance.

The first set of experiments focus on TCP’s ability to reflect the link’s back- and forward propagation
delay in the presence of bit errors. The second set of experiments evaluates several TCP flavors in
combination with various timer granularities and buffer sizes. The goal of the second experiment set is
to measure TCP performance in terms of FTP-throughput which allows later on to evaluate the benefits
of finer (hand-tuned) timer granularities.

All experiments impose either an BER of2 · 10−8 and2 · 10−5. The first rate is the worst error rate
which is allowed with the ATM-Sat project11 [17] whereas the second rate is a worst case approximation
of a typical BER12 found in today’s satellite systems. [13]

Effects on TCP’s Ability to Reflect the Variable Link Delay A large-file FTP transfer is conducted to
check on TCP’s ability to reflect the link’s propagation delay in the presence of BERs. The parameters of
the experiment are given in Table 5.3 except for the buffer size. The latter has been set only to 3300 Byte
to avoid additional delays imposed by a saturated link and its filled queues. The timer granularity is set
to 4 ms, i.e. the lowest possible value which does not cause (false) retransmission in the error-free case.

11The adaptive FEC scheme described by Emmelmann and Bischl can even guarantee lower error rates. [38] The used error rate
of 2 · 10−8 was the upper bound required by the system’s specifications.
12RFC 2488 does even state that current satellite radio systems shall be able to guarantee a BER of10−7 or less.
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Table 5.4 Experiment Set Parameters to Evaluate TCP Throughput Performanceab

Parameter Variations

TCP Flavor TCP Reno
TCPmin

Advertised Receive Buffer Size 64000 Byte
3300 Byte (≈ 1/2 BDP)

1460 Byte (MSS)
Bit Error Rate none

2 · 10−8

2 · 10−5

a Each of the resulting experiment set contains a number of experiments with varying timer granularities and lower bounds of the
RTO according to Table 5.5.
b Omitted TCP settings as well as the Application Profile and Definition can be deduced from Table 5.3

Table 5.5 Experiment Number For a Given TCP Flavor, Buffer Size, and BER [35]

Lower Bound of RTT Nonea 100 ms 200 ms Defaultb

Timer Granularity

G = 1 ms 2 7
G = 50 ms 3 8
G = 100 ms 4 9
G = 200 ms 5 10
G = 500 ms 6 11 12
Minimal G to avoid false 1
retransmissions (varying)

a A lower bound of 1 ms was used.
b Opnet modeler implements a lower bound of 500 ms for the RTO. This is feasible since the default timer granularity G is 500 ms

as well.

Effects of Timer Granularity on TCP Throughput An optimized or even hand-tuned TCP timer
granularity promises the retransmission of lost segments at an earliest possible stage. Final experiments
evaluate this degree of performance improvement.

Two TCP flavors, namely TCP Reno and "TCPmin" are evaluated. TCP Reno13 employs the Fast
Retransmit and Fast Recovery Algorithm [11,73] whereas "TCPmin" corresponds to Vanilla TCP which
has the two enhancements disabled and is therefore compliant to RFC 793. [46] The simulation consists
of a single FTP transfer of a 250 MB-large file using either one of the two TCP flavors. The transfer is
repeated for different advertised receive buffer sizes and different error rates. Table 5.4 summarizes the
possible parameter settings.

Finally, each of the resulting experiment consists of numerous FTP file transfers using different TCP
timer granularities G and different lower bounds of the RTO (ref. to Table 5.5) thus resulting in a total
of 216 unique file transfers. It should be noted that different timer granularities are evaluated without
limiting possible values to those avoiding false retransmissions. The focus of the measurement is on the
time to transmit a file. Every possible experiment is run several times to assure higher confidence in the
simulation results.

13Please refer to Section 4.1 for an introduction for TCP mechanisms.
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Fig. 5.19 Verification of Packet-Source-Sink Node

5.5 SIMULATION RESULTS AND EVALUATION

The presentation of the simulation result is twofold: Section 5.5.1 presents the data which assures that
the developed simulation environment (i.e. the satellite channel link model) works correctly. Afterwards,
Section 5.5.2 evaluates the simulation results related to TCP.

5.5.1 Link Model Verification

The simulation results to verify the adapted point-to-point pipeline stage model representing the satellite
link indicate that the network node used to conduct this verification works properly itself. As expected,
the link has the predefined capacity and imposes a variable delay to the forwarded traffic.

5.5.1.1 Verification of Supporting Network Nodes The measurements indicate the proper func-
tionality of the Packet-Source-Sink node. The link’s bandwidth is not limiting the data transfer (expected
link utilization of exactly 6.25%) and the allocated bandwidth equals to 2.048 Mbit/s (Fig. 5.19). The
transmission ends after the specified duration of ten minutes and the reverse channel is never utilized
(result not plotted). The shape of the plot at the end of the measurement is explained by the nature
of how Opnet accumulates measurement samples. During the simulation, several samples of the link
utilization and bandwidth allocation are taken. Opnet averages the samples taken over the last 12 minutes
and reports this result.14 Therefore, the last average interval around the 600 minute mark on the x-axis
contains samples of high and zero link utilization. Thus, the reported utilization is less than the expected
value. The two plots do not overlap around the 600 minute scale as the time intervals over which samples
are averaged are not synchronous.

14The period of the interval can be changed or even set to zero in order to report every single measurement. The latter is not
feasible for large and long simulations as the analysis data would grow up to several Gigabyte.



60 SIMULATION OF TCP OVER AN ERRONEOUS LEO SATELLITE LINK

 100

 1000

 0  50  100  150  200
 0

 20

 40

 60

 80

 100

 120

T
hr

ou
gh

pu
t i

n 
kb

it/
s

Li
nk

 U
til

iz
at

io
n 

in
 %

Simulation time in seconds

Link Throughput from Source to Sink
Link Utilization from Source to Sink

Fig. 5.20 Verification of Bandwidth Limitations of Mobile Link

5.5.1.2 Bandwidth Verification All three types of links limit the available bandwidth according
to their specification. The link utilization is permanently 100% and, for the mobile link, the reported
bandwidth allocation equals 384 kbit/s (Fig. 5.20).15 The source produces 2000-byte long packets at
a rate of 4096 packets/s (i.e. 64 Mbit/s). After one second, no further packets are forwarded to the
transmitter of the "link verification node" (refer to Fig. 5.11); thus, 8 MByte of data are pending for
transmission. The receiving node reports arriving data for approximately 170 seconds which is the time
to transmit 8 MByte over a 384 kbit/s link. This behavior indicates that the transmitter (refer to Fig. 5.10)
does not drop any packets but has an unlimited queue to store accepted packets until the link is either
idle or the transceiver pipeline stage function responsible for the transmission delay returns.

5.5.1.3 Variable Propagation Delay For an unsaturated link, the pipeline stage model is well able
to impose the variable propagation delay on transmitted packets. Figure 5.21 plots the end-to-end delay
as seen by the sink node and compares it with the theoretical delay discussed in Section 5.3.2. The
difference between the measured and analytical delay is 5 ms which corresponds to the reported queuing
delay. Opnet reports the queuing delay to be the time a packet is hold in the transmitter node of a pipeline
execution sequence (see Fig. 5.10) before it can be transmitted.

5.5.2 TCP Analysis

The analysis of TCP shows that TCP’s internal timer are well capable to reflect the link’s variable
propagation delay (Section 5.5.2.1). This ability is not influenced for advertised receive buffers having
a size less than the bandwidth delay product while still not limiting the data-rate to approximately one
segment per RTT. For these advertised buffers, the timer granularity can only be reduced on a hand-tuned
bases without causing premature retransmissions (Section 5.5.2.2). Finally, the introduction of bit errors
(Section 5.5.2.3) will show that only low BERs allow TCP to accurately guess the variable RTT. In terms

15Illustrations and a detailed analysis of the fixed and provider link can be found in Appendix C.
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of throughput performance, the TCP flavor itself rather than "hand-tuned" timer granularities is shown
to be the most significant factor.

5.5.2.1 TCP Timer Analysis TCP’s measurement of a segment’s round-trip time reflects the ex-
pected delay almost perfectly. Both graphs vary in between 13.5 and 22 ms. The following calculation
is used to compare the measured segment RTT with the expected delay valuedexp:

dexp = 2dpropagation + dqueuing (5.27)

wheredpropagation is the one way propagation delay anddqueuing is the sum of the forward and backward
queuing delay (Fig. 5.22). The difference in between the expected value and the measurement cannot
be explained by TCP mechanisms. It can be considered as a processing delay (e.g. needed for memory
allocation) as, for the given bandwidth of 2.048 Mbit/s, is corresponds almost exactly to the time to
receive 256 MByte.

Figure 5.23 illustrates the forward and backward queuing delay which are applied to Eq. (5.27).
The application profile defines FTP 100% get-operation modus, i.e. the link from the client to the server
should only carry ACKs whereas the link from the server to the client carries data packets. This definition
explains the observed queuing delays of 0.15 ms and 3.36 ms. The first delay corresponds to the time, a
pure TCP/IP ACK remains in the queue (transfer of 40 Byte over a 2.040 Mbit/s link). The second delay
corresponds to approximately 1.5 data segments in the queue (segment size 536) and can be explained by
the client’s ACK behavior. The client does either acknowledge a received segment right away or implies
the delayed acknowledgment scheme. Thus, an ACK arriving at the server may result in either sending
a single or two new data segments which results on the average in 1.5 segments pending in the queue.

The final measurements compare the measured segment round-trip time with the smoothed RTT and
the retransmission timeout (Fig. 5.24). Almost all samples of the measured and smoothed RTT plot
directly over each other; the retransmission timeout follows the anticipated RTT throughout the file
transfer.

5.5.2.2 Variation of Receive Buffer Size and Timer Granularity So far we have seen that
TCP’s timer algorithms are well capable to reflect the variable propagation delay of the LEO satellite
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link for a buffer which does not saturate the available bandwidth and for an infinite fine timer granularity
G. The following results will show the effect of different buffer sizes and timer granularities on this
ability.

Effects of Receive Buffer Size on Propagation Delay Approximation The advertised receive buffer
size effects TCP’s ability to reflect the variable link delay. A receive buffer which permanently saturates
the link, prevents TCP to accurately guess the current variable link delay. The segment round-trip time,
as Fig. 5.25 illustrates, is dominated by the constant queuing delay:

dqueuing =
64 kByte

2048 kbit/s
(5.28)

= 250 ms

which reflects the number of unacknowledged data on the forward link. The average propagation delay
of the ACK on the reverse channel (7 ms) has to be added to the queuing delay to come up with the
experienced segment RTT. A timer granularity of 1 ms did not cause any false retransmissions.

On the other side of the spectrum, a low link utilization, effects on link delay approximation does
not necessarily result in a good approximation of the variable propagation delay. Figure 5.26 plots the
measures smoothed SRTT for an advertised TCP receive buffer size of 1460 Byte. The size is equivalent
to the maximum segment size16 and limits TCP to transmit only a single segment at a time. The receiver
employs the delayed ACK option and thus acknowledges the segment only if a second one arrives or its
local time-out expires. As the buffer size allows only one segment of unacknowledged data, ACKs are
only emitted due to the time-out’s expiration and the client measures a constant 200 ms segment RTT.
The careful reader would expect a SRTT in between 210 and 220 ms to take the forward and backward
propagation delay into account. This delay is not measured as a TCP timer granularity of less than 26 ms
results in needless retransmissions caused by premature expirations of the sender’s RTO. Therefore, the

16The MSS is 1500 Byte, but TCP does not have to allocate memory for the 40-byte IP header.
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Fig. 5.25 Effect of 64kB Receive Buffer on Delay Estimation (G=1 ms)

measured SRTT can only be a multiple of 26 ms which ignores SRTTs in between 200 and 220 ms and
leaves the smoothed average around 200 ms (ref. to Section 4.1.3.1).

A link utilization of roughly 50% allows TCP’s SRTT measurement mechanism to approximate the
shape of the variable propagation delay. Figure 5.27 plots the Smoothed SRTT, RTO, and point-to-point
utilization for an advertised receive buffer size of 3300 kB which is roughly half of the bandwidth delay
product. In addition, the graph includes the expected SRTT. It is calculated from the measured queuing
delaysDqueuing and the measured one-way propagation delaydpropagation according to Section 5.5.1.3.

SRTTexpected = 2dpropagation + dqueuing (5.29)

Measurements indicate that the queuing in the client-server direction is determined by the transmission
of ACKs (40-byte long) where as the server-client direction reveals a queuing delay of approximately
8.8 ms which corresponds to the transmission delay imposed by 1.5 TCP/IP segments.

dqueuing = dqueuingClient2Server + dqueuingServer2Client (5.30)

≈ 40Byte + 1.5MSS

2048kbit/s

=
40Byte + 1.5 · 1500Byte

2048kbit/s

≈ 0.156ms + 8.789ms = 9.945ms

The average number of bytes in the reverse channel’s queue (1.5 ·MSS) is caused by the acknowledge
behavior of the client. The delayed ACK mechanism causes only every 2nd segment to be acknowledged
and the server may transmit up to two new segments upon the arrival of an ACK. As the advertised receive
buffer size is not a multiple of the MSS, either one or two segments may be sent to the client which, on
the average, places 1.5 segments in the queue. There is still a 1 ms gap in between the smoothed and
expected SRTT. It is not possible to tell if this gap is either caused by memory allocation procedures in
order to receive a packet or by the timer granularity of 4 ms which is the finest granularity for which
TCP does not unnecessarily re-transmit segments.
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Fig. 5.26 Effect of 1460 Byte (MSS) Receive Buffer on Delay Estimation (G=26 ms)

The anti-cyclical change of the link utilization with respect to the SRTT can be intuitively explained:
simulation results, TCP analysis, anti-cyclical change of link utilization wrt. SRTT The number of
unacknowledged data on the link is limited by the advertised receive buffer size (sizeadvRecBuffer). A
link utilization (linkUtil) of 100% is reached when this limit is equal or larger than the bandwidth delay
product (BDP ) and anti-proportional to the BDP for smaller advertised receive buffers.17

(sizeadvRecBuffer ≥ BDP ) ⇒ (linkUtil = 100%) (5.31)

(sizeadvRecBuffer ≤ BDP ) ⇒
(

linkUtil =
sizeadvRecBuffer

BDP

)
(5.32)

Equation (5.32) holds for the entire duration of the FTP transfer and yields for a constant advertised
receive buffer size and a constant bandwidth to

linkUtil ∼ 1
SRTT

(5.33)

The final experiment with an advertised receive buffer size of 6600 kByte illustrates the situation when
the link is only saturated from time to time (Fig.5.28). For periods of low link utilization, TCP’s timer is
well able to approximate the expected SRTT whereas for a saturated link, the queuing delay dominates.
A timer granularity of 1 ms is sufficient to avoid false retransmissions for the conducted experiment.

Minimization of Timer Granularity The value of TCP’s timer granularity G influences the latter’s
retransmission behavior (Section 4.1.3.1). Table 5.6 lists the lowest possible value of G which avoids
TCP to trigger its retransmission timeout prematurely. As an accurate estimation of the SRTT favors
quick retransmissions in the case of lost segments, these values are later on used to compare standard
timer granularities with these hand-tuned values to evaluate FTP transfers with regard to their throughput.

17A perfect growth of the congestion window CWND is assumed as it is the case for an error-free transmission.
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Table 5.6 Lowest Possible Value of TCP Timer GranularityG To Avoid Needless Retransmissions

Advertised Receive Buffer Size Mininum Timer Granularity (G)
to avoid false retransmission

64000 Byte 1 ms
6600 Byte (≈ BDP) 1 ms
3300 Byte (≈ 1/2 BDP) 4 ms
1460 Byte (= MSS) 26 ms (250 ms)a

a Only consecutive values larger than 200 ms avoid needless retransmissions without regard to the time the FTP transfer is started.

G = 26 ms is a single occurrence.
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Fig. 5.29 Smoothed SRTT and RTO for a BER of2 · 10−8 and a Buffer Size of 3.3 kB

5.5.2.3 Introduction of Bit Errors Up to now, simulation results have indicated that TCP is well
able to reflect the variable propagation delay for buffers not saturating the link while still being large
enough to transmit a reasonable number of packets simultaneously. False retransmission are avoided for
lower timer granularities than the standard 500 ms setting even though they require an accurate hand-
tuning with respect to the satellite link. Now, these results are reassured in the presence of an erroneous
link.

Effects on TCP’s Ability to Reflect the Variable Link Delay TCP is well able to reflect the variable
link’s propagation delay in the presence of low bit error rates. The measurements of the current value
of the Smoothed SRTT and the RTO for an error rate of2 · 10−8 (Fig. 5.29) do hardly differ from the
error-free case (Fig. 5.27). Retransmissions are solely caused by corrupted segments. The retransmission
timer does never trigger prematurely, i.e. it does never tell TCP to retransmit a segment which is not lost
but only delayed. Figure 5.29 does also visualize this behavior: The RTO curve is always well above
the SRTT curve.

In contrast to low bit-error rates, TCP’s timer measurement mechanisms is not able to reflect the
link’s variable propagation delay for a high BER of2 · 10−5. A segment being timed can only be
acknowledged if all preceding segments are received and acknowledged. Thus, severe segment loss and
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the retransmission of the missing segments have a strong influence on the SRTT measurement (which
is completed when sender receives the corresponding ACK). Figure 5.30 depicts the Smoothed SRTT
and reveals its high variability which in turn causes, according to Eq. (4.6), extremely high values of the
RTO.

Even though neither the Smoothed SRTT nor the RTO values resemble to the link’s variable propa-
gation delay, TCP does not prematurely retransmit any segments as the RTO is always well above the
current SRTT (Fig. 5.31).

Effects of Timer Granularity on TCP Throughput The assumption that the introduction of bit errors
does not yield to false retransmissions is only valid for timer granularities which do not cause the RTO
estimator to trigger prematurely in the error-free case. In order to compare the effects of different timer
granularities, the normalized FTP response time is calculated for each experiment. This does partially
eliminate the influence of the advertised receive buffer size on the results.

The normalized FTP response timetn is defined as

tn
def
=

t

t0
(5.34)

wheret is the FTP response time reported for the experiment applying a given timer granularity, receive
buffer size, TCP flavor, and BER. The FTP response timet0 is determined for a transmission over an
error-free channel. Experiments show its independence of the timer granularityG and lower bound
of the RTO. FTP response times are determined depending on the advertised receive buffer size (see
Table 5.7).18 The FTP response time for a 64 kB buffer is approximately twice as high as the one for the
3.3 kB Buffer as the BDP is approximately 6.6 kB thus limiting the throughput for the 64 kB experiments.

The experiments run over a link with a low bit error rate of2 · 10−8 show the dominant influence
of the TCP flavor and the advertised receive buffer size over the timer granularityG with respect to the
measured FTP response time (refer to Fig. 5.32).

18Values ofG which result in false retransmissions are not considered to determinet0.
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Table 5.7 FTP Response Times for various Receive Buffer Sizes

Advertised Receive Buffer Size FTP Response Timeab [min]

64000 Bytes 20.89
3300 Bytes 39.70
MSS 574.30

a Reported is the time to successfully transfer a 250 MB file over an error-free link.
b Results are independent of used TCP flavor and TCP timer granularityG as long asG is coarse enough to avoid false retrans-

missions.
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The worst degradation of FTP performance can be observed for the TCPmin flavor advertising a
receive buffer of 64 kB. As this TCP flavor lacks of the the Fast Retransmit and Recovery algorithm (see
Section 4.1.3.2), TCP recognizes lost segments only after the RTO timer expires. The congestion window
is entirely closed and the transmission is restarted with the lost segment onwards. As every closure of
the congestion window directly results in (short) periods of low link utilization, the FTP response time
is naturally larger than the one encountered by TCP Reno which avoids closing the congestion window.
A tremendous performance improvement is reached by reducing TCPs timer granularity to 250 ms. As
the finer granularity allows TCP to better approximate the current SRTT, a loss may be detected earlier.
Further reducing the timer granularity improves FTP performance only marginally. Timer granularities
of 100 ms and below may even result in a degradation. The finer the timer granularity, the more sensitive
is TCP to sudden changes in the RTT which occur for every collapse of the congestion window after a
segment loss. Thus, these extremely fine timer granularities cause several premature retransmissions as
the RTO elapses before the first transmitted segment arrives.

In contrast to TCPmin with an advertised receive buffer of 64 kB, TCP Reno (with the same buffer
size) and any TCP flavor announcing an receive buffer size equivalent to the MSS are hardly effected
by the low bit error rate. For both cases, the experienced RTT is determined by the advertised receive
buffer size: A buffer size of 1460 Byte (MSS) does result in a rather constant SRTT which is determined
by TCP’s delayed ACK mechanism; opening the CWND larger than one segment is therefore useless
and any possible reduction algorithm of the CWND in case of segment losses has no effects on the FTP
response time. The TCP Reno flavor in turn employs the Fast Retransmit and Recovery algorithm. As
the rather low BER does only occasionally cause a segment to be lost, TCP Reno detects these losses far
in advance before the RTO elapses. Only the lost segment is retransmitted and the congestion window is
not entirely closed. This results in an almost optimal performance of nearly 1 without regard to the used
timer granularity. It should be noted, that, for the advertised receive buffer of 64 kB, the timer granularity
has no effect on TCP’s ability to reflect the variable propagation delay as the latter is dominated by the
rather constant queuing delay.

FTP connections which advertise a receive buffer size of 3.3 kB and thus utilize approximately
half of the available bandwidth are degraded for both TCP flavors: Reno and "Min". Again, TCP
Reno’s Fast Retransmit and Recovery Algorithm outperforms TCP Min for all probed timer granularities.
Occasionally, more than one segment is lost per RTT which causes TCP Reno to collapse its CWND as
well. In these cases, an accurate estimation of the current (variable) RTT increases FTP performance
which can be deduced from larger normalized FTP response timer for a timer granularity of 500 ms.
Again, extreme fine granularities below 100 ms may cause false retransmissions and degrade TCP
performance.

In the presence of high bit error rates, e.g.2 · 10−5 as illustrated in Fig. 5.33, performance does
not any more depend on the used TCP flavor. Due to severe segment loss (i.e. more than one segment
per RTT), TCP Reno cannot prevent the congestion window to entirely collapse. Thus, TCP Reno and
TCPmin behave the same and their performance does only depend on the advertised receive buffer size
and applied timer granularity. Fine timer granularities below 100 ms result in a high variance of the
measured FTP response time as they cause the RTO to prematurely elapse several times. Even though
the RTO triggers retransmissions before the corresponding ACK could have arrived, the retransmissions
are (by accident) necessary as the severe BER caused the timed segment to be lost. Even though this
behavior results partially in better results than a rather coarse timer granularity would, it is not desired
as it is unpredictable.

The reader should explicitly notice that these experiments do only reveal how prone a TCP connection
is to different BERs for different buffer sizes and timer granularities. Still, the total transmission time of
the 250 MB file over the erroneous link (BER of2 · 10−5) is optimized for large receive buffers as they
utilize the link’s bandwidth the best.
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6
Conclusions

6.1 CONCLUSIONS

The presented analysis of TCP performance over an erroneous LEO satellite link answered the research
problems stated in Section 5.1:

1. TCP is well able to reflect the variable propagation delay of the LEO satellite link in the presence
of low BERs only. For high BERs, neither the smoothed SRTT nor the RTO reflect the variable
delay. Premature retransmissions of presumingly lost segments do not occur.

2. A reduced timer granularityG has no influence on this ability as long as the reduction does not
cause premature collapses of the RTO for an error-free environment.

3. Reducing the TCP timer granularityG to 250 ms results in a justifiable performance improvement.
Finer timer granularities require a link-specific reduction. For the latter, the gained performance
improvement is negligible with regard to the effort to find these hand-tuned timer granularities.

4. TCP’s performance is dominated by the employed retransmission mechanisms, i.e. the TCP flavor,
rather than by the advertised receive buffer size or TCP’s timer granularity.

5. For a given TCP flavor, large advertised receive buffers result in the best throughput but experience
still the most relative performance degradation (in terms of normalized FTP response time) in the
presence of an erroneous link.

6. Receive buffers larger or equal to the BDP result in a rather constant SRTT which is dominated by
the large queuing delay. The domination of the queuing delay over the variable propagation delay
of the LEO link has no influence on TCP performance.

These results neglect any proposals to modify the equations applied to the measured RTT in order to
calculate a RTO. The focus on improving TCP performance over the network specified within the ATM-
Sat project should be on large enough buffer sizes which can easily be assured by simple socket options.
As TCP Reno is rather compiled into commercial off the shelf operation systems than Vanilla TCP,
the effort to manually tune the timer granularity is not worth the possible performance improvements.
Additionally, some operation systems couple the timer granularity to the system clock’s frequency which
makes an isolated tuning of the timer granularity complicated.
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6.2 SUMMARY OF CONTRIBUTIONS

In order to analyze the effects of advertised receive buffer sizes and timer granularities on TCP perfor-
mance over an erroneous LEO satellite link, a TCP simulation model has been developed (Section 5.3.3.2).
This model includes over 200 experiments specified by different TCP flavors, advertised buffer sizes,
timer granularities, and BERs (Section 5.4.2). It allows to measure the FTP response time (from which
the throughput can be deduced) for a given file size and includes a new pipeline stage architecture
which allows to impose a satellite specific variable propagation delay on packets being transmitted via
a point-to-point duplex link (Section 5.3.3.1).

This new contributed propagation delay pipeline stage function is based upon the simulation of the
analyzed satellite constellation (Section 5.3.1). A description of the end-to-end propagation delay was
derived and further analyzed with respect to its variability. The up- and down-link delay was proven
to have the most predominant influence on the delay’s variability for all possible ISLs occurring in a
shortest-path routing based network. Thus, the final propagation delay model could be restricted to the
mere up- and down-link delay. Due to this analysis, an Opnet model for a point-to-point link imposing
satellite specific propagation delays has been implemented and an interface in between STK and Opnet
was provided to allow an easy exchange of propagation delay descriptions from STK to Opnet. The proper
functionality of the simulation model has been verified for six different satellite constellations including
ten propagation delay characteristics with different variability constrains (Sections 5.4.1 and 5.5.1).

The simulation results contributed to a deeper understanding of TCP’s timer mechanisms. Experiments
(Section 5.5.2) showed that a rather fine timer granularity has only a minor influence on TCP’s ability
to reflect a variable (satellite link) propagation delay. The performance improvement expected to come
along with fine timer granularities was rather low for values ofG below 250 ms which in turn does not
justify a hand-tuned TCP implementation with respect to the project framework of this work. Instead, the
results induce that the best possible performance improvement of TCP can be derived from optimized
congestion control and retransmission algorithms which possible include ways to differ in between
congestion and corruption-based losses.

6.3 FUTURE PROSPECTS AND OPEN ISSUES

Future work should back up these simulation based results by conduction real-time experiments, i.e. con-
necting computers over a satellite link or a satellite link simulator in order to conduct FTP transmissions.
These experiments might reveal some aspects of real-world, implementation specific characteristics of
the TCP protocol stack. One of these aspects to consider might be, e.g., the TCP timestamp option which
is always enabled for FreeBSD systems. [7] First experiments indicate, that the internal "tick rate" to
which the timer granularity is directly coupled has no influence on a possible premature segment retrans-
mission. [37] Besides, the simulations should be extended to include competing traffic which might be
TCP- or non-TCP-based.

Additionally, a more accurate model of hand-overs should be included: Up to now, handover is
assumed to be caused by satellites disappearing at the horizon which results in a periodic repetition of the
up- and downlink delay. If handover is caused by shadowing, the change of the propagation delay might
be by far more abrupt. Besides, a handover does usually imply to switch existing connections from one
satellite to another which results on possible additional queuing delays if packets have to be buffered
(during the handover) to prevent losses. Otherwise, packet loss occurs frequently due to hand-overs and
will most likely influence TCP performance.

Up to now, several TCP flavors have been proposed which differ from congestion and packet loss or
probe the link for the available bandwidth (Section 1.1.3). These modified algorithms do still have to
be carefully evaluated in a wider network environment to evaluate the impact of these modifications and
enhancements on other traffic flows on the internet.

Finally, the author envisions a possible extension of the presented simulation workflow (Section 5.2)
to allow an exchange of simulation models (i.e. protocol stack descriptions) in between Opnet and
a measurement environment including real (FreeBSD-based) systems communicating over a (possible
emulated) satellite link. [36]



Appendix A
Fourier Series Based

Approximation of Propagation
Delay using STK Measurements

The simulation model described in Section 5.3.2 approximates intermediate values of the propagation
delay in between two STK measurements either by a "sample and hold" method or linear interpolation.
As the period of the propagation delay is known to beT = 112.13 minutes, one can use the delay
samples reported by STK as an input for a Fast Fourier Analysis to gain Fourier Coefficients for a better
approximation.

Let x[n], n ∈ [0, N − 1] be the n-th sample of the delay reported by STK and assume the delay to be
periodic with a periodT , then the k-th Fourier Coefficientak is defined by

ak =
1
N

N−1∑
k=0

x[n]e−jk(2π/N)n (A.1)

As all samplesx[n] are real values,ak = a∗−k. The absolute values are plotted in Fig. A.1 and reveal the
major influence of the first three harmonics which suggests that an approximation using a Fourier Series
with all N components might not be necessary.

To prove this assumption, the analytical propagation delay is compared with a linear interpolation
of the STK measurements and an approximation of the delay using a Fourier Series. The latter gives
intermediate delay values according to

x[n] =
N−1∑
k=0

ake−jk(2π/N)n (A.2)

which are illustrated in Fig. A.2. The difference in between the linear interpolation and the Fourier Series
based approximation is neglect-able. [61,65]
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Appendix B
Delay Analysis of Various

Satellite Constellations

Allman et al analyzed in [14] TCP over various variable delay satellite channels. Their analysis included
only TCP’s ability to reflect the variable delay in its internal timer structures. Erroneous links and various
receive buffer sizes were not discussed.

In order to verify the simulation model used for this work, the satellite constellation used in [14]
were analyzed with STK to gain corresponding AER descriptions. The latter were transferred into the
point-to-point transceiver pipeline stage for the propagation delay. The delay was then measured in
Opnet. This work was only included into this simulation process to have a set of well known results in
order to verify the functionality of the underlying simulation model. Table 5.1 summarizes the analyzed
satellite constellations and their corresponding period.

It should be noted that in addition to the measured delay, Fig. B.1 includes the analytical delay of the
up- and down-link for the first period.
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Appendix C
Auxiliary Measurement Results

The ATM-Sat Project [6] specifies the satellite link to provide either 384 kbit/s, 2.048 Mbit/s, or
32.768 Mbit/s as available bandwidth. [16] In order to conduct the simulations of TCP, an appropri-
ate simulation model of the satellite channel had to be developed and verified with respect to the imposed
propagation delay and bandwidth limitations. The verification of the mobile user link (384 kbit/s) is
presented in Sections 5.4 and 5.5. The verification of with respect to the fixed terminal is presented here.
The simulation results with respect to the provider link resemble do not yield to further insight into the
simulation model as they merely verify its proper functionality, and are therefore omitted here.

The supporting network nodes (refer to Section 5.3.3.1) are connected via the developed pipeline
stage architecture (link model) representing the satellite channel. The latter is configured to limit the
bandwidth to the one associated with a fixed terminal. The network node acting as a sink (see Fig. C.1)
sends 200-byte-long packets at a data rate of 4096 packets/s achieving a data volume production of
64 MB/s. The production of packets is stopped after 10 seconds which leaves a total amount of 640 MB
to be transferred via the link. As expected, the link limits the bandwidth to 2.048 Mbit/s as Fig. C.2
illustrates: The link utilization is constantly reported to be 100% for a period of approximately 5.3
minutes.
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Fig. C.1 Testing Scenario of Fixed Terminal Bandwidth Limitations
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Appendix D
Target System Parameters

D.1 SATELLITE CONSTELLATION

The ATM-Sat project envisioned an orbit altitude of 1300 – 1400 km and an minimum elevation angle
of 20◦ – 30◦. For this constellation, the required number of satellites to ensure a continuous coverage is
at least 20. [76] Nevertheless, a number of 70 – 100 satellites is considered to achieve multiple satellite
visibility which in turn improves service availability. To guarantee a good coverage apart from the polar
regions, a Walker constellation with a typical inclination in the range of 45◦ to 55◦ is considered. Table D.1
summarizes the satellite constellation parameters as they are agreed on by the ATM-Sat consortium. [18]

Table D.1 Constellation Parameter for the ATM-Sat Target System

Number of Satellites 72
Orbit Altitude 1350 km
Orbit Period 112.7 min.
Inclination 47◦

Phasing 25◦

Minimum Elevation Angle 20◦

Satellite Visibility ≈ 12 min.
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D.2 LINK BUDGET

The following tables show the link budget for the uplink and downlink of the ATM-Sat target system.
The satellite Tx and Rx antenna gain has been adjusted to a spotbeam size in the order of 100 – 500 km
(depending on the elevation angle). As a rain attenuation (atmospheric losses) of 4.3 dB in the uplink
and of 2.8 dB in the downlink is already included in the link budget, a low link margin is acceptable. [18]

Table D.2 Basic assumptions for link budget calculation

Effective maximum distance 2700 km
Elevation angle 20◦

Earth station antenna efficiency 0.6
On board antenna efficiency 0.6
Link availability 99%
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Table D.3 Linkbudget for uplink (high bit rate fixed and portable terminal)

Bit Rate (with ATM encapsulation) 2447 kbit/s
Coding RS(65,53) 1.226
Up link data rate (with coding) 3000 kbit/s
Up link frequency 30 GHz
Earth station transmitted power 8 W
Output back-off 0 dB

Transmitted power 9.03 dBW
Tx antenna gain 35 dBi
Pointing error 0.3 deg
Pointing losses 0.35 dB
Output losses 1 dB
EIRP 42.68 dBW

Free space losses 190.60 dB
Atmospheric losses (99%) 4.3 dB
Mobile channel losses 2 dB
Polarisation losses 0.5 dB
Interference allowance 0.3 dB

Satellite Rx ant. gain at -4.3 dB 31.64 dBi

Rx losses 0.6 dB
Temperature of connection 290◦K
Antenna temperature 290◦K
Receiver noise figure 1.9 dB
Receiver noise temperature 159.15◦K
System noise temperature 449.15◦K
Satellite Ts 26.52 dB◦K
Satellite G/T 4.52 dB/◦K
C/N0 77.5 dBHz

Data Rate (2447 kbit/s) 63.89 dBHz
Implementation losses 1.5 dB
Eb/N0 12.11 dB
Req. Eb/N0 at CER10−10 7 dB
Link Margin 5.11 dB
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Table D.4 Linkbudget for uplink (low bit rate portable and mobile terminal)

Bit rate (with ATM encapsulation) 245 kbit/s
Coding RS(65,53) 1.226
Up link data rate 300 kbit/s
Up link frequency 30 GHz
Earth station transmitted power 4 W
Output back-off 0 dB

Transmitted power 6.02 dBW
Tx antenna gain 25 dBi
Pointing error 0.3 deg
Pointing losses 0.35 dB
Output losses 1 dB
EIRP 29.66 dBW

Free space losses 190.60 dB
Atmospheric losses (99%) 4.3 dB
Mobile channel losses 2 dB
Polarisation losses 0.5 dB
Interference allowance 0.3 dB

Satellite Rx ant. gain at -4.3 dB 31.64 dBi

Rx losses 0.6 dB
Temperature of connection 290◦K
Antenna temperature 290◦K
Receiver noise figure 1.9 dB
Receiver noise temperature 159.15◦K
System noise temperature 449.15◦K
Satellite Ts 26.52 dB◦K
Satellite G/T 4.52 dB/◦K
C/N0 65.08 dBHz

Data Rate 53.89 dBHz
Implementation losses 1.5 dB
Eb/N0 9.69 dB
Req. Eb/N0 at CER10−10 7 dB
Link Margin 2.69 dB
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Table D.5 Link budget for downlink (high bit rate fixed and portable terminal)

Bit rate (with ATM encapsulation) 30000 kbit/s
Coding RS(70,56) 1.25
Down link data rate 37500 kbit/s
Down link frequency 20 GHz
On board power per carrier 40 W
Output back-off 2 dB

Transmitted power 14.02 dBW
Tx antenna gain 31.5 dBi
Output losses 1.5 dB
EIRP/carrier (peak) 44.02 dBW

EIRP/carrier at -4.3 dB 39.72 dBW

Free space losses 187.08 dB
Atmospheric losses (99%) 2.8 dB
Mobile channel losses 2 dB
Polarisation losses 0.5 dB
Interference allowance 0.3 dB

Earth Station antenna gain 36.24 dBi
Pointing error 0.3 deg
Pointing losses (with tracking) 0.15 dB
Rx losses 0.2 dB
Sky temperature 30◦K
Antenna temperature 153.55◦K
Receiver noise figure 1.3 dB
Receiver noise temperature 101.20◦

Earth terminal system temperature 260.89◦

Earth terminal Ts 24.16 dB◦

Terminal G/T 11.72 dB/◦K
C/N0 87.01 dBHz

Data Rate (30 Mbit/s) 74.77 dBHz
Implementation losses 1.7 dB
Eb/N0 12.24 dB
Req. Eb/N0 at CER10−10 7 dB
Link Margin 5.24 dB
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Table D.6 Link budget for downlink (low bit rate portable and mobile terminal)

Bit rate (with ATM encapsulation) 3000 kbit/s
Coding RS(70,56) 1.25
Down link data rate 3750 kbit/s
Down link frequency 20 GHz
On board power per carrier 40 W
Output back-off 2 dB

Transmitted power 14.02 dBW
Tx antenna gain 31.5 dBi
Output losses 1.5 dB
EIRP/carrier (peak) 44.02 dBW

EIRP/carrier at -4.3 dB 39.72 dBW

Free space losses 187.08 dB
Atmospheric losses (99%) 2.8 dB
Mobile channel losses 2 dB
Polarisation losses 0.5 dB
Interference allowance 0.3 dB

Earth Station antenna gain 26.24 dBi
Pointing error 0.3 deg
Pointing losses (with tracking) 0.15 dB
Rx losses 0.2 dB
Sky temperature 30◦K
Antenna temperature 153.55◦K
Receiver noise figure 1.3 dB
Receiver noise temperature 101.20◦K
Earth terminal system temperature 260.89◦K
Earth terminal Ts 24.16 dB◦K
Terminal G/T 1.72 dB/◦K
C/N0 77.01 dBHz

Data Rate (3 Mbit/s) 64.77 dBHz
Implementation losses 1.7 dB
Eb/N0 12.24 dB
Req. Eb/N0 at CER10−10 7 dB
Link Margin 5.24 dB



Appendix E
Auxiliary Tools for AER Data

Conversion from STK to Opnet

The following C-code simply reads slant ranges from a text file (which were previously reported by STK
as part of the AER report) and automatically generates an h-file with the predefined propagation delay
structure as expected by thegetstkdelay() function (ref. to Section 5.3.3.1 and Appendix F.2.1).

1 #include <stdio.h>
2 #include <math.h>
3
4 main()
5 {
6 int lines =0; /* produced lines of delay-entries */
7
8 float range, delay;
9

10 /* include file header */
11 printf("#ifndef FILENAME_H \n");
12 printf("#define FILENAME_H \n");
13 printf("#ifdef __cplusplus \n");
14 printf("extern \"C\"{ \n");
15 printf("#endif \n");
16
17
18 /* anything we have to include ... */
19 printf("\n\n");
20 printf("#include \"stk_delay_types.h\"\n");
21
22 printf("\n");
23
24 /* print first lines of delay array ...*/
25
26 printf("const DELAY_TYPE spesify_array_name [] = {\n");
27 printf("\t_specify_orbit_period_T,\n");
28 printf("\t_specify_granularity_of_vektor_elements");
29 /* attention: not ,\n in last printf here !! */
30
31 while( scanf("%f", &range) != EOF ) {
32 delay = range / 3e5;
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33 printf(",\n");
34 printf("\t%f", delay);
35 lines ++;
36 }
37
38 printf("\n};\n");
39
40 printf("/* produced %d lines with delay entires */", lines);
41
42 /* include file trailer */
43 printf("#ifdef __cplusplus\n");
44 printf("}\n");
45 printf("#endif\n");
46 printf("#endif\n");
47
48 }



Appendix F
Opnet Models

F.1 POINT-OT-POINT PIPELINE STAGE PROPAGATION DELAY PROCEDURE

1 /* gmd_vardelay_dpt_propdel.ps.c */
2 /* Default propagation delay model for pt-to-pt link Transceiver Pipeline */
3 /* modified for the ATM SAT Project */
4
5 /****************************************/
6 /* Copyright (c) 1993-2000 */
7 /* by OPNET Technologies, Inc. */
8 /* (A Delaware Corporation) */
9 /* 3400 International Drive, N.W. */

10 /* Washington, D.C., U.S.A. */
11 /* All Rights Reserved. */
12 /****************************************/
13
14 #include "opnet.h"
15 #include <math.h>
16 #include "link_delay.h"
17 #include "gmd_stk_delay.h"
18
19 #define DISTANCE_BASED 1E+15
20
21 /* Constants to use if stk_delay files are used */
22 #define COBE_MIN_VAR_CST 999999001
23 #define COBE_MAX_VAR_CST 999999002
24 #define ISS_MAX_VAR_CST 999999003
25 #define ISS_MIN_VAR_CST 999999004
26 #define LAGEOS_MAX_VAR_CST 999999005
27 #define LAGEOS_MIN_VAR_CST 999999006
28 #define NAVSTAR_MAX_MIN_VAR_CST 999999007
29 #define RADCAL_MAX_VAR_CST 999999008
30 #define RADCAL_MIN_VAR_CST 999999009
31
32
33 /* Constant to use if the approximation function of delay as
34 experienced within the ATM-Sat Project is added */
35 #define ATMSAT_LEO 1E+16
36
37 #if defined (__cplusplus)
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38 extern "C"
39 #endif
40 void
41 gmd_vardelay_dpt_propdel (Packet * pkptr)
42 {
43 Objid link_objid;
44 double prop_delay;
45 double x; /* tmp var */
46
47
48 /** Compute propagation delay associated with a **/
49 /** packet transmission on a point-to-point link. **/
50 FIN (gmd_vardelay_dpt_propdel (pkptr));
51
52 /* Obtain object id of link carrying transmission. */
53 link_objid = op_td_get_int (pkptr, OPC_TDA_PT_LINK_OBJID);
54
55 /* Obtain propagation delay associated with that link. */
56 if (op_ima_obj_attr_get (link_objid, "delay", &prop_delay) == OPC_COMPCODE_FAILURE)
57 op_sim_end ("Error in point-to-point propagation delay pipeline stage (dpt_propdel):",
58 "Unable to get propagation delay from link attribute.", OPC_NIL, OPC_NIL);
59
60 if (prop_delay == DISTANCE_BASED)
61 {
62 prop_delay = link_delay(link_objid);
63 }
64
65
66 /* The following section sets the delay according to the look-up table
67 derived via stk.
68 Please refer to the gmd_stk_delay.h file.
69 */
70
71 if (prop_delay == COBE_MIN_VAR_CST)
72 {
73 prop_delay = get_stk_delay( op_sim_time(), cobe_minVar );
74 }
75
76 if (prop_delay == COBE_MAX_VAR_CST)
77 {
78 prop_delay = get_stk_delay( op_sim_time(), cobe_maxVar );
79 }
80
81 if (prop_delay == ISS_MAX_VAR_CST )
82 {
83 prop_delay = get_stk_delay( op_sim_time(), iss_maxVar );
84 }
85
86 if (prop_delay == ISS_MIN_VAR_CST)
87 {
88 prop_delay = get_stk_delay( op_sim_time(), iss_minVar );
89 }
90
91 if (prop_delay == LAGEOS_MAX_VAR_CST)
92 {
93 prop_delay = get_stk_delay( op_sim_time(), lageos_maxVar );
94 }
95
96 if (prop_delay == LAGEOS_MIN_VAR_CST)
97 {
98 prop_delay = get_stk_delay( op_sim_time(), lageos_minVar );
99 }

100
101 if (prop_delay == NAVSTAR_MAX_MIN_VAR_CST)
102 {
103 prop_delay = get_stk_delay( op_sim_time(), navstar_maxMinVar );
104 }
105
106 if (prop_delay == RADCAL_MAX_VAR_CST)
107 {
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108 prop_delay = get_stk_delay( op_sim_time(), radcal_maxVar );
109 }
110
111 if (prop_delay == RADCAL_MIN_VAR_CST)
112 {
113 prop_delay = get_stk_delay( op_sim_time(), radcal_minVar );
114 }
115
116 /* The following section sets the delay according to an approximative function
117 describing the current (i.e., time-variying) delay as experienced within
118 the ATM-SAT Project */
119 if (prop_delay == ATMSAT_LEO)
120 {
121 prop_delay = op_sim_time();
122 x = prop_delay - (long) prop_delay; /* save the "type conversion" difference */
123 prop_delay = (long) prop_delay % 720;
124 prop_delay += x; /* add the difference lost due to type conversion */
125 prop_delay -= 360;
126
127 x = 2 * M_PI * prop_delay / 6762 ;
128 prop_delay = sqrt( 6.37 * 6.37 + 7.72 * 7.72 - 2 * 6.37 * 7.72 * cos( x )) / 3E2;
129 }
130
131 /* Place propagation delay in packet transmission data attribute. */
132 op_td_set_dbl (pkptr, OPC_TDA_PT_PROP_DELAY, prop_delay);
133
134 FOUT;
135 }
136

F.2 INTERFACE TO STK (EXTERNAL PIPELINE STAGE CODE)

F.2.1 Lookup Function get stk delay()

F.2.1.1 Interface Definition (h-file)

1 #ifndef GMD_STK_DELAY_H
2 #define GMD_STK_DELAY_H
3 #ifdef __cplusplus
4 extern const "C"{
5 #endif
6
7 #include "stk_delays/stk_delay_types.h"
8
9 /*

10 * Vektors with delays:
11 *
12 * 1st element: function period T
13 * 2nd element: granularity of vektor, i.e., every xy time-tics, we switch
14 * to the next vector entry
15 * 3rd-end: delays
16 *
17 * Example:
18 * const DELAY_TYPE my_delay[] = {
19 * 60,
20 * 10,
21 * 1,
22 * 2,
23 * 3,
24 * 4
25 * };
26 *
27 * Attention: Base time unit is SECONDS !!!
28 */
29
30
31 /*
32 ** prototypes
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33 */
34 int calc_index( DELAY_TYPE, const DELAY_TYPE [] );
35 DELAY_TYPE get_stk_delay( DELAY_TYPE, const DELAY_TYPE []);
36
37 /*
38 ** extern constal declarations for delay tables
39 */
40
41 extern const DELAY_TYPE cobe_minVar [];
42 extern const DELAY_TYPE cobe_maxVar [];
43
44 extern const DELAY_TYPE iss_maxVar [];
45 extern const DELAY_TYPE iss_minVar [];
46
47 extern const DELAY_TYPE lageos_maxVar [];
48 extern const DELAY_TYPE lageos_minVar [];
49
50 extern const DELAY_TYPE navstar_maxMinVar [];
51
52 extern const DELAY_TYPE radcal_maxVar [];
53 extern const DELAY_TYPE radcal_minVar [];
54
55
56
57 #ifdef __cplusplus
58 }
59 #endif
60 #endif
61

F.2.1.2 Interface Implementation (external C-code)

1 #include "gmd_stk_delay.h"
2 #include "gmd_stk_delay_definitions.h"
3
4 #include <opnet.h>
5 #include <math.h>
6
7 DELAY_TYPE get_stk_delay( DELAY_TYPE c_time, const DELAY_TYPE stk_delay_array[] )
8 {
9 DELAY_TYPE d = 0;

10
11 FIN (get_stk_delay(c_time, stk_delay_array))
12
13 d = stk_delay_array [calc_index( c_time, stk_delay_array )];
14
15 FRET (d);
16 } /* of get_stk_delay */
17
18 int calc_index( DELAY_TYPE t, const DELAY_TYPE delays[])
19 {
20 DELAY_TYPE t_temp;
21 const DELAY_TYPE T = delays[0];
22 const DELAY_TYPE delta = delays[1];
23 int idx;
24
25 FIN (calc_index( t, delays))
26
27 /* reduce given time to be within period T */
28 t_temp = ( (t / T) - (long) (t / T) ) * T;
29
30 /* return index of array */
31 idx = (int) (t_temp / delta) + DELAY_INDEX_OFFSET;
32
33 FRET (idx);
34 }
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F.2.2 STK based Delay Tables

F.2.2.1 Definition of Available Delay Patterns

1 #ifndef GMD_STK_DELAY_DEFINITIONS_H
2 #define GMD_STK_DELAY_DEFINITIONS_H
3 #ifdef __cplusplus
4 extern "C"{
5 #endif
6
7 #include "stk_delays/stk_delay_types.h"
8
9 /*

10 * Vektors with delays:
11 *
12 * 1st element: function period T
13 * 2nd element: granularity of vektor, i.e., every xy time-tics, we switch
14 * to the next vector entry
15 * 3rd-end: delays
16 *
17 * Example:
18 * const DELAY_TYPE my_delay[] = {
19 * 60,
20 * 10,
21 * 1,
22 * 2,
23 * 3,
24 * 4
25 * };
26 *
27 * Attention: Base time unit is SECONDS !!!
28 */
29
30 #include "stk_delays/cobe_minVar.h"
31 #include "stk_delays/cobe_maxVar.h"
32
33 #include "stk_delays/iss_maxVar.h"
34 #include "stk_delays/iss_minVar.h"
35
36 #include "stk_delays/lageos_maxVar.h"
37 #include "stk_delays/lageos_minVar.h"
38
39 #include "stk_delays/navstar_max_min.h"
40
41 #include "stk_delays/radcal_maxVar.h"
42 #include "stk_delays/radcal_minVar.h"
43
44
45 #ifdef __cplusplus
46 }
47 #endif
48 #endif
49

F.2.2.2 Internal Type Definitions

1 #ifndef STK_DELAY_TYPES_H
2 #define STK_DELAY_TYPES_H
3 #ifdef __cplusplus
4 extern "C"{
5 #endif
6
7 /*
8 * Defines the offset to the first delay in the delay table.
9 * Please refer also to the layout of the delay table

10 *
11 * Also define the type of the array elements holding the delays.
12 */
13 #define DELAY_INDEX_OFFSET 2
14 #define DELAY_TYPE double
15
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16 #ifdef __cplusplus
17 }
18 #endif
19 #endif
20

F.2.2.3 Cobe Delay with Maximum Variance

1 #ifndef COBE_MAX_VAR_H
2 #define COBE_MAX_VAR_H
3 #ifdef __cplusplus
4 extern "C"{
5 #endif
6
7
8 #include "stk_delay_types.h"
9

10 const DELAY_TYPE cobe_maxVar [] = {
11 3720,
12 60,
13 0.149494,
14 0.148142,
15 0.146755,
16 0.145338,
17 0.143896,
18 0.142434,
19 0.140957,
20 0.139470,
21 0.137979,
22 0.136489,
23 0.135006,
24 0.133537,
25 0.132087,
26 0.130663,
27 0.129272,
28 0.127920,
29 0.126614,
30 0.125360,
31 0.124165,
32 0.123035,
33 0.121978,
34 0.120998,
35 0.120101,
36 0.119294,
37 0.118581,
38 0.117966,
39 0.117454,
40 0.117048,
41 0.116751,
42 0.116565,
43 0.116491,
44 0.116529,
45 0.116680,
46 0.116942,
47 0.117313,
48 0.117792,
49 0.118374,
50 0.119056,
51 0.119834,
52 0.120702,
53 0.121656,
54 0.122690,
55 0.123797,
56 0.124971,
57 0.126207,
58 0.127496,
59 0.128834,
60 0.130213,
61 0.131626,
62 0.133067,
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63 0.134529,
64 0.136007,
65 0.137494,
66 0.138983,
67 0.140471,
68 0.141949,
69 0.143414,
70 0.144860,
71 0.146283,
72 0.147676,
73 0.149037,
74 0.150360
75 };
76 #ifdef __cplusplus
77 }
78 #endif
79 #endif

The delay tables of other analyzed configurations are omitted here as they do not convey further
understanding of implementation methods.

F.3 PROCESS MODEL OF THE LINKVERIFICATION NODE

1 /* Process model C form file: gmd_linkverification.pr.c */
2 /* Portions of this file copyright 1992-2002 by OPNET Technologies, Inc. */
3
4
5
6 /* This variable carries the header into the object file */
7 static const char gmd_linkverification_pr_c [] =
8 "MIL_3_Tfile_Hdr_ 81A 30A modeler 7 3DBEA9BF\
9 3DBEA9BF 1 castoralphagem mem 0 0 none none\

10 0 0 none 0 0 0 0 0 0";
11 #include <string.h>
12
13
14
15 /* OPNET system definitions */
16 #include <opnet.h>
17
18 #if defined (__cplusplus)
19 extern "C" {
20 #endif
21 FSM_EXT_DECS
22 #if defined (__cplusplus)
23 } /* end of ’extern "C"’ */
24 #endif
25
26
27 /* Header Block */
28
29 /* Include files. */
30 #include "oms_dist_support.h"
31
32 /* Define constands used in the process model */
33 #define GEN_NEW_PKT 10
34
35 /* State transition macro definitions */
36 #define SEND_PKT (intrpt_type == OPC_INTRPT_SELF && intrpt_code == GEN_NEW_PKT)
37 #define PKT_ARRIVAL (intrpt_type == OPC_INTRPT_STRM)
38
39 /* Function Declarations */
40 static void gmd_linkverification_sv_init ();
41
42 /* End of Header Block */
43
44
45 #if !defined (VOSD_NO_FIN)
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46 #undef BIN
47 #undef BOUT
48 #define BIN FIN_LOCAL_FIELD(last_line_passed) = __LINE__ - _block_origin;
49 #define BOUT BIN
50 #define BINIT FIN_LOCAL_FIELD(last_line_passed) = 0; _block_origin = __LINE__;
51 #else
52 #define BINIT
53 #endif /* #if !defined (VOSD_NO_FIN) */
54
55
56
57 /* State variable definitions */
58 typedef struct
59 {
60 /* Internal state tracking for FSM */
61 FSM_SYS_STATE
62 /* State Variables */
63 Stathandle bits_rcvd_stathandle;
64 Stathandle bitssec_rcvd_stathandle;
65 Stathandle pkts_rcvd_stathandle;
66 Stathandle pktssec_rcvd_stathandle;
67 Stathandle ete_delay_stathandle;
68 Stathandle bits_rcvd_gstathandle;
69 Stathandle bitssec_rcvd_gstathandle;
70 Stathandle pkts_rcvd_gstathandle;
71 Stathandle pktssec_rcvd_gstathandle;
72 Stathandle ete_delay_gstathandle;
73 double start_time;
74 OmsT_Dist_Handle packet_size_dist_handle;
75 OmsT_Dist_Handle intarrvl_time_dist_handle;
76 OmsT_Dist_Handle start_time_dist_handle;
77 double stop_time;
78 OmsT_Dist_Handle stop_time_dist_handle;
79 } gmd_linkverification_state;
80
81 #define pr_state_ptr ((gmd_linkverification_state*) SimI_Mod_State_Ptr)
82 #define bits_rcvd_stathandle pr_state_ptr->bits_rcvd_stathandle
83 #define bitssec_rcvd_stathandle pr_state_ptr->bitssec_rcvd_stathandle
84 #define pkts_rcvd_stathandle pr_state_ptr->pkts_rcvd_stathandle
85 #define pktssec_rcvd_stathandle pr_state_ptr->pktssec_rcvd_stathandle
86 #define ete_delay_stathandle pr_state_ptr->ete_delay_stathandle
87 #define bits_rcvd_gstathandle pr_state_ptr->bits_rcvd_gstathandle
88 #define bitssec_rcvd_gstathandle pr_state_ptr->bitssec_rcvd_gstathandle
89 #define pkts_rcvd_gstathandle pr_state_ptr->pkts_rcvd_gstathandle
90 #define pktssec_rcvd_gstathandle pr_state_ptr->pktssec_rcvd_gstathandle
91 #define ete_delay_gstathandle pr_state_ptr->ete_delay_gstathandle
92 #define start_time pr_state_ptr->start_time
93 #define packet_size_dist_handle pr_state_ptr->packet_size_dist_handle
94 #define intarrvl_time_dist_handle pr_state_ptr->intarrvl_time_dist_handle
95 #define start_time_dist_handle pr_state_ptr->start_time_dist_handle
96 #define stop_time pr_state_ptr->stop_time
97 #define stop_time_dist_handle pr_state_ptr->stop_time_dist_handle
98
99 /* This macro definition will define a local variable called */

100 /* "op_sv_ptr" in each function containing a FIN statement. */
101 /* This variable points to the state variable data structure, */
102 /* and can be used from a C debugger to display their values. */
103 #undef FIN_PREAMBLE
104 #define FIN_PREAMBLE gmd_linkverification_state *op_sv_ptr = pr_state_ptr;
105
106
107 /* Function Block */
108
109 enum { _block_origin = __LINE__ };
110 static void
111 gmd_linkverification_sv_init ()
112 {
113 Objid my_id;
114 /* object ID of surrounding processor or queue */
115 Objid traf_gen_comp_attr_objid;



PROCESS MODEL OF THE LINKVERIFICATION NODE 101

116 /* object ID of compound traffic attribute */
117 Objid traf_conf_objid;
118 /* ...... subcomponent of compund traffic attrib */
119 Objid pkt_gen_comp_attr_objid;
120 /* object ID of compunt packet attribute, i.e., part of the traffic attribute */
121 Objid pkt_gen_args_objid;
122 /* ....... subcomponent of compound packet attrib */
123 char start_time_string [128];
124 char stop_time_string [128];
125 char intarrvl_rate_string [128], packet_size_string [128];
126
127 /** Initializes state variables associated with **/
128 /** this process model. **/
129 FIN (gmd_linkverification_sv_init ());
130
131 /* Initializes statistic handles associated with this */
132 /* process model */
133 bits_rcvd_stathandle = op_stat_reg ("GMD Linkverifications.Traffic\
134 Received (bits)",
135 OPC_STAT_INDEX_NONE,
136 OPC_STAT_LOCAL);
137 bitssec_rcvd_stathandle = op_stat_reg ("GMD Linkverifications.Traffic\
138 Received (bits/sec)",
139 OPC_STAT_INDEX_NONE,
140 OPC_STAT_LOCAL);
141 pkts_rcvd_stathandle = op_stat_reg ("GMD Linkverifications.Traffic\
142 Received (packets)",
143 OPC_STAT_INDEX_NONE,
144 OPC_STAT_LOCAL);
145 pktssec_rcvd_stathandle = op_stat_reg ("GMD Linkverifications.Traffic\
146 Received (packets/sec)",
147 OPC_STAT_INDEX_NONE,
148 OPC_STAT_LOCAL);
149 ete_delay_stathandle = op_stat_reg ("GMD Linkverifications.End-to-End\
150 Delay (seconds)",
151 OPC_STAT_INDEX_NONE,
152 OPC_STAT_LOCAL);
153
154 bits_rcvd_gstathandle = op_stat_reg ("GMD Linkverifications.Traffic\
155 Received (bits)",
156 OPC_STAT_INDEX_NONE,
157 OPC_STAT_GLOBAL);
158 bitssec_rcvd_gstathandle = op_stat_reg ("GMD\
159 Linkverifications.Traffic Received (bits/sec)",
160 OPC_STAT_INDEX_NONE,
161 OPC_STAT_GLOBAL);
162 pkts_rcvd_gstathandle = op_stat_reg ("GMD\
163 Linkverifications.Traffic Received (packets)",
164 OPC_STAT_INDEX_NONE,
165 OPC_STAT_GLOBAL);
166 pktssec_rcvd_gstathandle = op_stat_reg ("GMD\
167 Linkverifications.Traffic Received (packets/sec)",
168 OPC_STAT_INDEX_NONE,
169 OPC_STAT_GLOBAL);
170 ete_delay_gstathandle = op_stat_reg ("GMD\
171 Linkverifications.End-to-End Delay (seconds)",
172 OPC_STAT_INDEX_NONE,
173 OPC_STAT_GLOBAL);
174
175 /* Determine the object ID of the containing node */
176 my_id = op_id_self ();
177
178 /* Read the traffic generation parameters. */
179 op_ima_obj_attr_get (my_id, "Traffic Generation Parameters",
180 &traf_gen_comp_attr_objid);
181 traf_conf_objid = op_topo_child (traf_gen_comp_attr_objid,
182 OPC_OBJTYPE_GENERIC, 0);
183
184 /* Determine the start time for traffic generation. */
185 op_ima_obj_attr_get (traf_conf_objid, "Start Time", start_time_string);
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186 if (strcmp (start_time_string, "Never") != 0)
187 {
188 start_time_dist_handle = oms_dist_load_from_string (start_time_string);
189 start_time = oms_dist_outcome (start_time_dist_handle);
190 }
191 else
192 {
193 start_time = -1.0;
194 }
195
196 /* Determine the stop time for traffic generation. */
197 op_ima_obj_attr_get (traf_conf_objid, "Stop Time", stop_time_string);
198 if (strcmp (stop_time_string, "Never") != 0)
199 {
200 stop_time_dist_handle = oms_dist_load_from_string (stop_time_string);
201 stop_time = oms_dist_outcome (stop_time_dist_handle);
202 }
203 else
204 {
205 stop_time = -1.0;
206 }
207
208
209 /* Load the distribution used to determine the packet */
210 /* interarrivals. */
211 op_ima_obj_attr_get (traf_conf_objid,
212 "Packet Generation Arguments",
213 &pkt_gen_comp_attr_objid);
214 pkt_gen_args_objid = op_topo_child (pkt_gen_comp_attr_objid,
215 OPC_OBJTYPE_GENERIC, 0);
216
217 op_ima_obj_attr_get (pkt_gen_args_objid, "Interarrival Time",
218
219 intarrvl_rate_string);
220 intarrvl_time_dist_handle
221 = oms_dist_load_from_string (intarrvl_rate_string);
222
223 /* Load the distribution used to determine the size of */
224 /* the packets being generated. */
225 op_ima_obj_attr_get (pkt_gen_args_objid,
226 "Packet Size", packet_size_string);
227 packet_size_dist_handle
228 = oms_dist_load_from_string (packet_size_string);
229
230 FOUT ;
231 }
232
233 /* End of Function Block */
234
235 /* Undefine optional tracing in FIN/FOUT/FRET */
236 /* The FSM has its own tracing code and the other */
237 /* functions should not have any tracing. */
238 #undef FIN_TRACING
239 #define FIN_TRACING
240
241 #undef FOUTRET_TRACING
242 #define FOUTRET_TRACING
243
244 #if defined (__cplusplus)
245 extern "C" {
246 #endif
247 void gmd_linkverification (void);
248 Compcode gmd_linkverification_init (void **);
249 void gmd_linkverification_diag (void);
250 void gmd_linkverification_terminate (void);
251 void gmd_linkverification_svar (void *, const char *, char **);
252 #if defined (__cplusplus)
253 } /* end of ’extern "C"’ */
254 #endif
255
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256
257
258
259 /* Process model interrupt handling procedure */
260
261
262 void
263 gmd_linkverification (void)
264 {
265 int _block_origin = 0;
266 FIN (gmd_linkverification ());
267 if (1)
268 {
269 /* used to store the type of interupt and its code */
270 /* they both need to be set in the EXIT EXECUTIVE block */
271 /* of the state that is LEFT upon an interrupt */
272 int intrpt_type;
273 int intrpt_code;
274
275 Packet* pkptr;
276 double pk_size;
277 double ete_delay;
278 double intarrvl_time;
279
280
281 FSM_ENTER (gmd_linkverification)
282
283 FSM_BLOCK_SWITCH
284 {
285 /*---------------------------------------------------------*/
286 /** state (receive) enter executives **/
287 FSM_STATE_ENTER_FORCED (0, state0_enter_exec, "receive",
288 "gmd_linkverification ()\
289 [receive enter execs]")
290 {
291 /* Obtain the incoming packet. */
292 pkptr = op_pk_get (op_intrpt_strm ());
293
294 /* Caclulate metrics to be updated. */
295 pk_size = (double) op_pk_total_size_get (pkptr);
296 ete_delay = op_sim_time () - op_pk_creation_time_get (pkptr);
297
298 /* Update local statistics. */
299 op_stat_write (bits_rcvd_stathandle, pk_size);
300 op_stat_write (pkts_rcvd_stathandle, 1.0);
301 op_stat_write (ete_delay_stathandle, ete_delay);
302
303 op_stat_write (bitssec_rcvd_stathandle, pk_size);
304 op_stat_write (bitssec_rcvd_stathandle, 0.0);
305 op_stat_write (pktssec_rcvd_stathandle, 1.0);
306 op_stat_write (pktssec_rcvd_stathandle, 0.0);
307
308 /* Update global statistics. */
309 op_stat_write (bits_rcvd_gstathandle, pk_size);
310 op_stat_write (pkts_rcvd_gstathandle, 1.0);
311 op_stat_write (ete_delay_gstathandle, ete_delay);
312
313 op_stat_write (bitssec_rcvd_gstathandle, pk_size);
314 op_stat_write (bitssec_rcvd_gstathandle, 0.0);
315 op_stat_write (pktssec_rcvd_gstathandle, 1.0);
316 op_stat_write (pktssec_rcvd_gstathandle, 0.0);
317
318 /* Destroy the received packet. */
319 op_pk_destroy (pkptr);
320 }
321
322
323 /** state (receive) exit executives **/
324 FSM_STATE_EXIT_FORCED (0, "receive", "gmd_linkverification ()\
325 [receive exit execs]")
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326 {
327 }
328
329
330 /** state (receive) transition processing **/
331 FSM_TRANSIT_FORCE (3, state3_enter_exec, ;, "default",
332 "", "receive", "idle")
333 /*---------------------------------------------------------*/
334
335
336
337 /** state (INIT) enter executives **/
338 FSM_STATE_ENTER_FORCED_NOLABEL (1, "INIT",
339 "gmd_linkverification () [INIT enter execs]")
340 {
341 /* Initilaize the statistic handles to keep */
342 /* track of traffic sinked by this process. */
343 gmd_linkverification_sv_init () ;
344
345 /* schedule the first packet to be sent */
346 /* start_time is set to -1 if we do not want to generate traffic */
347 if (start_time >= 0.0)
348 {
349 op_intrpt_schedule_self (op_sim_time () + start_time, GEN_NEW_PKT);
350 }
351 }
352
353
354 /** state (INIT) exit executives **/
355 FSM_STATE_EXIT_FORCED (1, "INIT",
356 "gmd_linkverification () [INIT exit execs]")
357 {
358 }
359
360
361 /** state (INIT) transition processing **/
362 FSM_TRANSIT_FORCE (3, state3_enter_exec, ;,
363 "default", "", "INIT", "idle")
364 /*---------------------------------------------------------*/
365
366
367
368 /** state (send) enter executives **/
369 FSM_STATE_ENTER_FORCED (2, state2_enter_exec, "send",
370 "gmd_linkverification () [send enter execs]")
371 {
372 /* Create a packet using the outcome of the loaded */
373 /* distribution. */
374
375 pk_size = oms_dist_outcome (packet_size_dist_handle);
376 pkptr = op_pk_create (pk_size*8);
377
378 /* This is the point at which to create statistic about */
379 /* sent packets */
380 /* to be filled */
381
382 /* Send the packet on the stream connected to this */
383 /* module. */
384 op_pk_send (pkptr, 0);
385
386 /* schedule an interrupt in order to create the next */
387 /* packet if the stop time is not reached */
388 if ((stop_time < 0.0) || (stop_time > op_sim_time () ))
389 {
390 intarrvl_time = oms_dist_outcome (intarrvl_time_dist_handle);
391 op_intrpt_schedule_self (op_sim_time () + intarrvl_time,
392 GEN_NEW_PKT);
393 }
394 }
395
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396
397 /** state (send) exit executives **/
398 FSM_STATE_EXIT_FORCED (2, "send",
399 "gmd_linkverification () [send exit execs]")
400 {
401 }
402
403
404 /** state (send) transition processing **/
405 FSM_TRANSIT_FORCE (3, state3_enter_exec, ;,
406 "default", "", "send", "idle")
407 /*---------------------------------------------------------*/
408
409
410
411 /** state (idle) enter executives **/
412 FSM_STATE_ENTER_UNFORCED (3, state3_enter_exec, "idle",
413 "gmd_linkverification () [idle enter execs]")
414 {
415 }
416
417
418 /** blocking after enter executives of unforced state. **/
419 FSM_EXIT (7,gmd_linkverification)
420
421
422 /** state (idle) exit executives **/
423 FSM_STATE_EXIT_UNFORCED (3, "idle",
424 "gmd_linkverification () [idle exit execs]")
425 {
426 /* Determine the type of interrupt. */
427 intrpt_type = op_intrpt_type ();
428 intrpt_code = op_intrpt_code ();
429 }
430
431
432 /** state (idle) transition processing **/
433 FSM_INIT_COND (SEND_PKT)
434 FSM_TEST_COND (PKT_ARRIVAL)
435 FSM_DFLT_COND
436 FSM_TEST_LOGIC ("idle")
437
438 FSM_TRANSIT_SWITCH
439 {
440 FSM_CASE_TRANSIT (0, 2, state2_enter_exec, ;,
441 "SEND_PKT", "", "idle", "send")
442 FSM_CASE_TRANSIT (1, 0, state0_enter_exec, ;,
443 "PKT_ARRIVAL", "", "idle", "receive")
444 FSM_CASE_TRANSIT (2, 3, state3_enter_exec, ;,
445 "default", "", "idle", "idle")
446 }
447 /*---------------------------------------------------------*/
448
449
450
451 }
452
453
454 FSM_EXIT (1,gmd_linkverification)
455 }
456 }
457
458 #if defined (__cplusplus)
459 extern "C" {
460 #endif
461 extern VosT_Fun_Status Vos_Catmem_Register (const char * , int ,
462 VosT_Void_Null_Proc, VosT_Address *);
463 extern VosT_Address Vos_Catmem_Alloc (VosT_Address, size_t);
464 extern VosT_Fun_Status Vos_Catmem_Dealloc (VosT_Address);
465 #if defined (__cplusplus)
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466 }
467 #endif
468
469
470 Compcode
471 gmd_linkverification_init (void ** gen_state_pptr)
472 {
473 int _block_origin = 0;
474 static VosT_Address obtype = OPC_NIL;
475
476 FIN (gmd_linkverification_init (gen_state_pptr))
477
478 if (obtype == OPC_NIL)
479 {
480 /* Initialize memory management */
481 if (Vos_Catmem_Register ("proc state vars (gmd_linkverification)",
482 sizeof (gmd_linkverification_state),
483 Vos_Vnop, &obtype) == VOSC_FAILURE)
484 {
485 FRET (OPC_COMPCODE_FAILURE)
486 }
487 }
488
489 *gen_state_pptr = Vos_Catmem_Alloc (obtype, 1);
490 if (*gen_state_pptr == OPC_NIL)
491 {
492 FRET (OPC_COMPCODE_FAILURE)
493 }
494 else
495 {
496 /* Initialize FSM handling */
497 ((gmd_linkverification_state *)(*gen_state_pptr))->current_block = 2;
498
499 FRET (OPC_COMPCODE_SUCCESS)
500 }
501 }
502
503
504
505 void
506 gmd_linkverification_diag (void)
507 {
508 /* No Diagnostic Block */
509 }
510
511
512
513
514 void
515 gmd_linkverification_terminate (void)
516 {
517 int _block_origin = __LINE__;
518
519 FIN (gmd_linkverification_terminate (void))
520
521 Vos_Catmem_Dealloc (pr_state_ptr);
522
523 FOUT;
524 }
525
526
527 /* Undefine shortcuts to state variables to avoid */
528 /* syntax error in direct access to fields of */
529 /* local variable prs_ptr in gmd_linkverification_svar function. */
530 #undef bits_rcvd_stathandle
531 #undef bitssec_rcvd_stathandle
532 #undef pkts_rcvd_stathandle
533 #undef pktssec_rcvd_stathandle
534 #undef ete_delay_stathandle
535 #undef bits_rcvd_gstathandle
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536 #undef bitssec_rcvd_gstathandle
537 #undef pkts_rcvd_gstathandle
538 #undef pktssec_rcvd_gstathandle
539 #undef ete_delay_gstathandle
540 #undef start_time
541 #undef packet_size_dist_handle
542 #undef intarrvl_time_dist_handle
543 #undef start_time_dist_handle
544 #undef stop_time
545 #undef stop_time_dist_handle
546
547
548
549 void
550 gmd_linkverification_svar (void * gen_ptr,
551 const char * var_name, char ** var_p_ptr)
552 {
553 gmd_linkverification_state *prs_ptr;
554
555 FIN (gmd_linkverification_svar (gen_ptr, var_name, var_p_ptr))
556
557 if (var_name == OPC_NIL)
558 {
559 *var_p_ptr = (char *)OPC_NIL;
560 FOUT;
561 }
562 prs_ptr = (gmd_linkverification_state *)gen_ptr;
563
564 if (strcmp ("bits_rcvd_stathandle" , var_name) == 0)
565 {
566 *var_p_ptr = (char *) (&prs_ptr->bits_rcvd_stathandle);
567 FOUT;
568 }
569 if (strcmp ("bitssec_rcvd_stathandle" , var_name) == 0)
570 {
571 *var_p_ptr = (char *) (&prs_ptr->bitssec_rcvd_stathandle);
572 FOUT;
573 }
574 if (strcmp ("pkts_rcvd_stathandle" , var_name) == 0)
575 {
576 *var_p_ptr = (char *) (&prs_ptr->pkts_rcvd_stathandle);
577 FOUT;
578 }
579 if (strcmp ("pktssec_rcvd_stathandle" , var_name) == 0)
580 {
581 *var_p_ptr = (char *) (&prs_ptr->pktssec_rcvd_stathandle);
582 FOUT;
583 }
584 if (strcmp ("ete_delay_stathandle" , var_name) == 0)
585 {
586 *var_p_ptr = (char *) (&prs_ptr->ete_delay_stathandle);
587 FOUT;
588 }
589 if (strcmp ("bits_rcvd_gstathandle" , var_name) == 0)
590 {
591 *var_p_ptr = (char *) (&prs_ptr->bits_rcvd_gstathandle);
592 FOUT;
593 }
594 if (strcmp ("bitssec_rcvd_gstathandle" , var_name) == 0)
595 {
596 *var_p_ptr = (char *) (&prs_ptr->bitssec_rcvd_gstathandle);
597 FOUT;
598 }
599 if (strcmp ("pkts_rcvd_gstathandle" , var_name) == 0)
600 {
601 *var_p_ptr = (char *) (&prs_ptr->pkts_rcvd_gstathandle);
602 FOUT;
603 }
604 if (strcmp ("pktssec_rcvd_gstathandle" , var_name) == 0)
605 {
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606 *var_p_ptr = (char *) (&prs_ptr->pktssec_rcvd_gstathandle);
607 FOUT;
608 }
609 if (strcmp ("ete_delay_gstathandle" , var_name) == 0)
610 {
611 *var_p_ptr = (char *) (&prs_ptr->ete_delay_gstathandle);
612 FOUT;
613 }
614 if (strcmp ("start_time" , var_name) == 0)
615 {
616 *var_p_ptr = (char *) (&prs_ptr->start_time);
617 FOUT;
618 }
619 if (strcmp ("packet_size_dist_handle" , var_name) == 0)
620 {
621 *var_p_ptr = (char *) (&prs_ptr->packet_size_dist_handle);
622 FOUT;
623 }
624 if (strcmp ("intarrvl_time_dist_handle" , var_name) == 0)
625 {
626 *var_p_ptr = (char *) (&prs_ptr->intarrvl_time_dist_handle);
627 FOUT;
628 }
629 if (strcmp ("start_time_dist_handle" , var_name) == 0)
630 {
631 *var_p_ptr = (char *) (&prs_ptr->start_time_dist_handle);
632 FOUT;
633 }
634 if (strcmp ("stop_time" , var_name) == 0)
635 {
636 *var_p_ptr = (char *) (&prs_ptr->stop_time);
637 FOUT;
638 }
639 if (strcmp ("stop_time_dist_handle" , var_name) == 0)
640 {
641 *var_p_ptr = (char *) (&prs_ptr->stop_time_dist_handle);
642 FOUT;
643 }
644 *var_p_ptr = (char *)OPC_NIL;
645
646 FOUT;
647 }
648
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Glossary

Acknowledgement A control message sent to indicate that a data block just received is okay. [42]

AER An acronym fromAzimuthElevation Range. This term is used within the context of STK
simulations to denote to ASCII-based simulation results describing the current AER values of an
analyzed satellite as a function of time.

Application Definition Node A standard library network node available in Opnet. It allows the
definition of certain application types and their characteristics. Such a definition might specify an
application "large file transfer" which retrieves a 200-MB-large file from a specific server. Another
application definition might specify an IP-telephone call which last 10 minutes.

Ascending Node The point of a satellite’s orbit plane which is passed when the satellite enters the
northern hemisphere. [55]

ASCII An acronym form American Standard Code for Information Interexchange. A standard code
used for information interexchange between data processing equipment and over data communication
networks. [42]

Azimuth The horizontal angular distance from a reference direction, usually the northern point of
the horizon, to the point where a vertical circle through a celestial body intersects the horizon, usu-
ally measured clockwise. Sometimes the southern point is used as the reference direction, and the
measurement is made clockwise through360o. [2]

Bandwidth Delay Product (BDP) The BDP denotes the number of un-acknowledged bytes which
can be transmitted simultaneously on a bandwidth-limited link in order to achieve a link-utilization
of 100%. As the propagation delay of the acknowledgement has to be considered when calculation
the BDP, instead of the one-way delay, the round trip time (RTT) is used.

Bit Error Rate (BER) The probability that a single bit is corrupted.

Cross correlation function The cross correlationrdd∗(τ) of two functionsd(t) andd∗(t) is defined

asrdd∗(τ) def=
∫ −∞
+∞ d(t) d∗(t+τ) dt. rdd∗(τ) can be interpreted as a measurement representing how

similard(t) andd∗(t) are for a given phase shiftτ .

Data Link Control A term that refers to the functions provided at the data link layer of the ISO/OSI
reference model. The data link layer defines protocols for frames or packets and how they are
transmitted to and from each network device. [42]

Delayed ACK scheme TCP does not have to acknowledge every received segment. Instead it may
choose to wait fork segments (usuallyk = 2) before an ACK is sent. This mechanism is known as
delayed ACK scheme.
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Fast Recovery Algorithm A congestion control scheme used in TCP Reno. Instead of closing the
current congestion window entirely after a retransmission of a lost segment, TCP sets its congestion
window eventually to one half.

Fast Retransmit Algorithm A retransmission algorithm used in TCP Reno. After three duplicate
ACKs have arrived, TCP starts the retransmission of the presumingly lost segment right away, i.e., it
does not wait for the retransmission timeout to expire.

Elevation angle The angle at which a user can see the satellite above the horizon. [55]

Equivalent Isotropic Radiated Power (EIRP) The EIRP is the main characteristic of a transmitter.
It is defined as the same power flux density as a given theoretical antenna. [55]

Finite State Machine (FSM) A machine (real or abstract) consisting of a set of states including an
initial state, a constellation of possible input events, a set of output events, and a state transition
function. [42]

Forward Error Correction (FEC) In communications, an error-correction method involving the
addition of redundant bits into the transmitted date stream. The receiver uses the redundant data to
correct errors (where possible) introduced in the communication channel. [42]

FTP An abbreviation of File Transfer Protocol. Generally, a protocol that lets a user on one computer
system access and copy files to and from another computer system using a network connection. FTP
does also refer to a standard high-level application which provides the described services to a user by
utilizing the TCP/IP protocol suite. [42]

Geostationary Orbit (GEO) A circular orbit ath = 35786km and aninclinationof i = 0. The orbit
period equals onesidereal day. Thus, a satellite on this orbit appears "stationary" with respect to an
observer on Earth. [55]

Highly Elliptical Orbit (HEO) An elliptical orbit with a rather large eccentricity. Usually, commu-
nication between a HEO satellite and an observer on Earth is only possible when the satellite is near
the perigee.

ICO Inter-Circular Orbit, a synonym forMedium Orbit

Inclined Walker constellation A satellite constellation for global coverage usingN satellites in
inclined circular LEOs with equal period. Usually referenced by theWalker Notation N/P/Fin which
P stands for the number of orbit planes andF for the phasing factor that determines the angular offset
between the satellites in adjacent orbit planes. [55]

Inclination The inclination defines the angle between the orbit plane and the equatorial plane. It is
computed positively with respect to the ascending satellite orbit track. [55]

Internet Protocol Refer toIP

IP An abbreviation of Internet Protocol. That part of the TCP/IP protocol that governs how packets of
information are addressed for delivery throughout the Internet network. [42]

Line of Nodes The intersection between the equatorial plane and the orbit plane is called line of nodes.
[55]

Link Object A link object represents in the context of Opnet modeler a definition of a transmission link.
This link can be simplex or duplex and might represent a wireless or wired architecture including
busses. It represents the associated pipeline stage procedures which are usually implemented in
standard C and which modify or delay transmitted data accordingly to the link’s characteristics.

Low Earth Orbit Orbits with an altitude in between 500–5000 km.

Nadir The "sub satellite point", i.e. the point where the perpendicular touches the earth when dropped
from the satellite.

Neagle Algorith An TCP algorithm proposed in RFC 896 [60] which accumulates small junks of data
if TCP has outstanding (un-acknowledged) segments. The collected data is sent when an ACK arrives.

Network node In the context of Opnet modeler, a network node may represent any kind of network
device, i.e. a router, work station, firewall, or server. Network nodes are connected via link (nodes)
to form a network.

Opnet Modeler An object-oriented, discrete-event based network simulator.

Orbit The path of a celestial body or an artificial satellite as it revolves around another body. [2]
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Profile Definition Node The profile definition node is a standard component of Opnet’s model library.
It allow the definition of certain user profiles. Each profile might consist of several applications
(which are defined with theapplication definition node). Such a profile definition might specify a
user behavior of retrieving once a day a large file via FTP and talking randomly during the day with
colleagues via an IP-telephony application.

Public Switched Telephone Network (PSTN) A domestic telecommunications network accessed by
telephones, key telephone systems, private branch exchange (PABX) trunks, and data arrangements.
[42]

Quadrature Amplitude Modulation (QAM) A method of modulating a carries with both ampli-
tude modulation and phase modulation techniques to create a constellation of signal points, each
representing one of the data points defined by a multi-bit data sample. [42]

Quadrature Phase Shift Keying (QPSK) A modulation technique whereby 2 bits of signaling data
are taken together to cause the carrier’s phase to be one of four states. [42]

RAAN SeeRight ascension of the ascending node

Range Seeslant range

Retransmission Time-Out (RTO) The RTO is calculated by TCP to determine the time at which a
segment has to be retransmitted if it is not previously acknowledged.

Right Ascension of the Ascending Node (RAAN) The RAAN determines the angle between a refer-
ence direction and the line of nodes. The reference direction is given by the direction from the earth’s
center to the sun at vernal equinox. [55]

Round-Trip Time (RTT) The accumulated time of the forward propagation (and transmission) delay
and the corresponding delays associated with the reverse channel.

Sidereal Day Time required by the Earth to rotate once with respect to the stars:23 h 56 min 4.09 s =
86164.09 s

Simple Network Management Protocol (SNMP) A standard protocol that provides a means to mon-
itor network-related statistics and error conditions and to set network configuration and runtime
parameters across the network. [42]

Slant range The slant range denotes the distance between the user terminal and the satellite. [55]

STK An abbreviation for Satellite ToolKit. A commercial-off-the-shelf analysis and simulation tool
for satellite constellations.

Sub-Network Opnet forms networks out of network nodes and links in between them. For a better
overview, the user may choose to accumulate a number of nodes in so called sub-networks. The
sub-network is represented by a single network node and might be extended to see its contents.

TCP An abbreviation for Transmission Control Protocol. It is defined in RFC 793. [51] It is a transport
layer protocol for packetizing data, managing the transmission of the packets, and performing error
control. TCP is built on top of the Internet Protocol and is generally seen in the combination TCP/IP
(TCP over IP). It adds reliable communication, flow-control, multiplexing, connection-oriented com-
munication, and it provides full-duplex, process-to-process connections. [42]

TCP Reno A TCPflavor employing theFast RetransmitandFast Recoveryalgorithm.

TCP SACK A TCPflavor applying the selective acknowledge option. SACKs are used by the receiver
to provide exact information about the packets correctly arrived. During the fast retransmission phase,
the sender first retransmits all suspectedly lost packets before sending new ones. This allows to recover
from several lost segments within one RTT. [16,33]

TCP Vanilla Refer toTCPmin

TCPmin TCPmindenotes throughout the text to aTCP flavor compliant to RFC 793 [46]. Thus,
TCPminequals toTCP Renobut without theFast RetransmitandFast Recoveryalgorithm.

Time Devision Multiple Access (TDMA) A form of time division multiplexing in which individual
terminals are assigned a time to transmit a burst of information, i.e., the information from each signal
source is transmitted sequentially across the common link. [42]

Vernal Equinox The date (near March 21 in the northern hemisphere) when night and day are nearly
the same length and Sun crosses the celestial equator (i.e., declination 0) moving northward. In the
southern hemisphere, the vernal equinox corresponds to the center of the Sun crossing the celestial
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equator moving southward and occurs on the date of the northern autumnal equinox. The vernal
equinox marks the first day of the season of spring. [75]

Walker Orbit Refer toInclined Walker constellation

Zenith The point on the celestial sphere that is directly above the observer. [2]
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