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Abstract—Current TCP protocols have lower throughput
performance in satellite networks mainly due to the effects of long
propagation delays and high link error rates. In this paper, a new
congestion control scheme called TCP-Peach is introduced for
satellite networks. TCP-Peach is composed of two new algorithms,
namely Sudden Start and Rapid Recovery, as well as the two
traditional TCP algorithms, Congestion Avoidance and Fast
Retransmit. The new algorithms are based on the novel concept
of using dummy segments to probe the availability of network
resources without carrying any new information to the sender.
Dummy segments are treated as low-priority segments and
accordingly they do not effect the delivery of actual data traffic.
Simulation experiments show that TCP-Peach outperforms other
TCP schemes for satellite networks in terms of goodput. It also
provides a fair share of network resources.

Index Terms—Congestion control, high bit error rates, long
propagation delays, satellite networks, TCP protocols.

I. INTRODUCTION

BOTH experimental and analytical studies [30] confirm that
the current TCP protocols have performance problems in

networks with long propagation delays and relatively high link
error rates such as satellite networks [37], [33], [6]. From the
view of TCP, the throughput is reciprocal to theround-trip time
(RTT) of a connection, and is approximately proportional to the
congestion window( ) which represents the amount of un-
acknowledged data the sender can have in transit to the receiver
[39].

In satellite networks, TCP throughput decreases because [37],
[33], [6]:

• the long propagation delays cause longer duration of the
Slow Startphase during which the sender may not use the
available bandwidth;

• the TCP protocol was initially designed to work in net-
works with low link error rates, i.e., all segment losses
were mostly due to network congestions. As a result, the
sender decreases its transmission rate each time a seg-
ment loss is detected. This causes unnecessary throughput
degradation if segment losses occur due to link errors, as
it is likely in satellite networks.
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In [5], the TCP standard mechanisms are identified which
provide the best performance in satellite networks. However, to
our knowledge, these identified problems are still not solved to
date [37].

In this paper, we introduce TCP-Peach, a new congestion con-
trol scheme for satellite networks which is an end-to-end so-
lution to improve the throughput performance in satellite net-
works.

The paper is organized as follows. In Section II, we present
the problems of TCP in satellite networks and the related work.
We introduce TCP-Peach in Section III and describe its behavior
in Section IV. In Section V, we evaluate the performance of TCP-
Peach through simulation. Finally, in Section VI, we conclude
the paper.

II. TCP ISSUES INSATELLITE NETWORKS ANDRELATED WORK

A. Slow Start Issues in Satellite Networks and Related Work

In the beginning of a new connection, the sender executes
the Slow Start algorithm to probe the availability of bandwidth
along the path [27]. The time required by the Slow Start to reach
a bit rate is [37]

(1)

where RTT is the round-trip time andis the average packet
length expressed in bits. Equation (1) is satisfied if theDelayed
ACK Option[13] is not implemented, i.e., the receiver sends one
acknowledgment (ACK) for each received segment. In Table I,
we give the duration of the Slow Start phase for different types
of satellites, i.e., Low Earth Orbit (LEO), Medium Earth Orbit
(MEO) and Geosynchronous Earth Orbit (GEO) satellites, and
for different values of , when kB, which is a common
value for segment size.

If the delayed ACK mechanism [13] is implemented, i.e., the
receiver sends one ACK for each two received segments, then
the time required by the Slow Start to reach the bit ratebe-
comes even higher than indicated in Table I. For the sake of
simplicity, in the following we assume that the delayed ACK
mechanism [13] is not implemented.

Many actual TCP applications, like HTTP, are based on the
transfer of small files. Thus, it can happen that the entire transfer
occurs within the Slow Start phase. In other words, it is pos-
sible that a TCP connection is not able to utilize all available
resources in the network.

To cope with the performance problems of the Slow Start
algorithm in long propagation delay networks such as satellite
networks, there have been several proposed solutions in recent
years.

1063–6692/01$10.00 © 2001 IEEE
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TABLE I
DURATION OF THE SLOW START PHASE FORLEO, MEO,AND GEO SATELLITES

• Increasing Initial Window (IIW) [4]. The congestion
window 1 is initially set to a value larger than 1
but lower than 4, i.e., . With this option,

values reported in Table I can be reduced by up
to which can still be very high.

• TCP Spoofing [29], [10]. A router near the source sends
back ACKs for TCP segments in order to give the source
the illusion of a short delay path. TCP spoofing improves
throughput performance but has some problems [37]:

Problem 1: The router must do a considerable amount
of work because it becomes responsible for the correct
delivery of the TCP segments it acknowledges to the
source.
Problem 2: Spoofing requires ACKs to flow through the
same path as data. On the contrary, in Internet it is very
common that ACKs flow through a different path than
data.
Problem 3: If the path changes or the router crashes,
data may get lost.
Problem 4: If IP encryption is used, the scheme cannot
be applied.

• Cascading TCP or Split TCP [7]. TCP connection is
divided into multiple connections. This solution has the
same problems as TCP spoofing with the exception of
Problem 2 [37].

• Fast Start [36]. The Fast Start algorithm, alternative to
the Slow Start algorithm, is introduced for Web transfers
in [36]. The basic idea of the Fast Start is to reuse the
values of the transmission rate from the recent past. How-
ever, the transmission rate used in the past might be too
high for the current actual network condition, which may
lead to congestion in the network. Thus, the TCP seg-
ments transmitted during this Fast Start period are carried
by low-priority IP packets so that the throughput of ac-
tual data segments treated as high-priority segments will
not be decreased. Note that one of the eight bits of the
Type of Service(TOS) field—now renamedDifferentiated
Service(DS) field—in the IP header specifies the priority
of the packet [38], whereas more recent IP implementa-
tions aimed to support theDifferentiated Service Model
(DiffServ) can define several priority levels. Experiments
in [36] show the effectiveness of the Fast Start algorithm
compared to Slow Start. However, the Fast Start has the
following problems:

Problem 1: The transmitted low-priority segments carry
new information to the receiver, thus, they are still data
segments, and if they are lost, then they must be recov-

1In the following, we consider thesegmentas the unit of data.

ered. Since these low-priority data segments may be lost
easily, the sender needs to enhance its recovery algo-
rithms [36].
Problem 2: Fast Start can be used only if a recent value
of the congestion window for the same path is available
at the sender. This requires that within a short time the
same server (sender) transfers several files to the same
user (receiver), which may often not be the case.

B. Error Rate Issues in Satellite Networks and Related Work

TCP was initially developed for wireline networks where the
link error rate is low, such that the majority of the segment losses
is due to network congestions. Thus, the sender assumes that
all segment losses are caused by congestions and accordingly it
decreases its transmission rate.

Although the application offorward error correction(FEC)
algorithms can increase the reliability of satellite links, satellite
networks have several orders of magnitude higher error rates
than the wireline networks [2], [37]. As a result, we cannot ig-
nore the errors in satellite links and assume that all segment
losses occur due to congestions. This assumption may lead to
drastic and unnecessary decrease in resource utilization [2], [8],
[9], [16], [18], [20], [24], [37].

This problem could be solved if TCP could distinguish
whether segment losses occur due to network congestion or due
to link errors [20]. However, this is currently infeasible [37].

In [3], the authors suggest to decouple error and congestion
control. TCP would then be responsible only for congestion con-
trol while the error control is handled by the link layer. However,
this solution is impractical because the link layers of all subnet-
works composing the Internet need to be redesigned.

An alternative solution is that the sender could contain an
algorithm which can distinguish between congestion and errors.
However, such an algorithm must be very reliable. In fact, if
this algorithm does not respond correctly to an actual network
congestion, the network utilization decreases drastically [37].
To our knowledge, such a reliable algorithm does not exist to
date.

III. TCP-PEACH

TCP-Peach contains the following algorithms:Sudden Start,
Congestion Avoidance, Fast Retransmit, andRapid Recovery,
as highlighted in Fig. 1. The Congestion Avoidance and
Fast Retransmit algorithms may be those proposed either in
TCP-Reno [28] or by TCP-Vegas [14], [15], [1]. Sudden Start
and Rapid Recovery are the new algorithms and are presented
in Sections III-B and III-C, respectively. The new algorithms
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Fig. 1. TCP-Peach scheme.

are based on the use ofdummy segments, which are explained
in Section III-A.

A. Dummy Segments

Dummy segments are low-priority segments generated by the
sender as a copy of the last transmitted data segment, i.e., they
do not carry any new information to the receiver.

The sender uses the dummy segments to probe the availability
of network resources. If a router on the connection path is con-
gested, then it discards the IP packets carrying dummy segments
first. Consequently, the transmission of dummy segments does
not cause a throughput decrease of actualdata segments, i.e.,
the traditional segments. If the routers are not congested, then
the dummy segments can reach the receiver. The sender sets one
or more of the six unused bits in the TCP header to distinguish
dummy segments from data segments. Therefore, the receiver
can recognize the dummy segments and acknowledge them to
the sender. The ACKs for dummy segments are also marked
using one or more of the six unused bits of the TCP header and
are carried by low-priority IP segments. This requires simple
modification of the receiver implementation. The sender inter-
prets the ACKs for dummy segments as the evidence that there
are unused resources in the network and accordingly, can in-
crease its transmission rate.

The TCP-Peach sender can verify whether the receiver imple-
ments the required modification during the Sudden Start. If the
required modification is not implemented, TCP-Peach sender
stops transmitting dummy segments, i.e., TCP-Peach behaves
like TCP-Reno [28].

In the following sections we show that the ACKs for the
dummy segments transmitted during the Sudden Start and Rapid
Recovery are received during the Congestion Avoidance phase.
Consequently, the Congestion Avoidance is modified in TCP-
Peach.

We introduce the variable . Upon receiving an ACK for
a dummy segment, the sender checks the value of . Then:

• If , then the congestion window is in-
creased by one, i.e., .

Fig. 2. TCP-Peach:Sudden Start()Sudden Start()Sudden Start():

• If , then the value is decreased by one,
i.e., , and the congestion window value

remains the same.
The variable is used in order to match the behaviors of
TCP-Peach and TCP-Reno [28] when the network is congested,
i.e., this guarantees that TCP-Peach is TCP-friendly [23]. In the
beginning of a new connection, is set to zero.

TCP-Peach requires that all routers in the connection path
support some priority discipline. In traditional IP networks, the
IP TOS can be used for this purpose [38]. In fact, one of the eight
bits of the TOS field in the IP header gives the priority level of
the IP packet [38]. Instead, more recent IP versions, e.g., IPv6
[19], explicitly provide several priority levels.

Currently, some routers in the Internet do not apply any pri-
ority policy. However, in the near future, the Internet will sup-
port quality of service through the DiffServ [11], which requires
all routers to support multiple service classes. As a matter of
fact, all recent commercial routers, e.g., Cisco series 7000 and
12 000 [17], support at least the IP TOS.

Low-priority segments are used in [12] to measure the avail-
able bandwidth in the network to conduct admission control.

Low-priority segments are also used in [36] to improve the
performance of TCP. However, the low-priority segments in [36]
are different from the dummy segments because:

1) They are not used to probe the availability of network
resources. In fact, their objective is to carry information
to the receiver more rapidly without harming other flows.

2) Since they carry new information to the receiver, they are
still data segments, and if they are lost, then they must be
recovered.

3) They are used only in the beginning of a new connection.

B. Sudden Start Algorithm

The Sudden Start substitutes the Slow Start [27] in Fig. 1.
Let , which is specified by the receiver, be the maximum

value for the congestion window . As shown in Fig. 2,
the basic idea of the Sudden Start is that in the beginning of
a connection, the sender sets the congestion window to 1
and after the first data segment, it transmits dummy
segments every

(2)

As a result, after one , the congestion window size
increases very quickly. Note that the sender can estimate RTT
during the connection setup phase.

Now we explain the Sudden Start algorithm in detail.
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Fig. 3. Comparison between TCP-Peach and TCP-Reno in the beginning of a new connection.

Suppose that a new TCP connection begins at time .

• :
The sender transmits a data segment first and

dummy segments, in such a way that
the data and dummy segment transmissions are uniformly
distributed in an interval equal to . Then, it executes
the Congestion Avoidance.

• :
The ACKs related to the data and dummy segments

transmitted in the time interval arrive at
the sender. Since , for any received ACK re-
lated to a dummy segment, the sender increases its
by 1 and transmits a new data segment. In this period, the
data segments are transmitted at the same rate, , of
the ACK arrivals. Note that is approximately

(3)

where is the maximum achievable rate with the currently
available bandwidth and is given in (2). As a result, at
time , the transmission rate of the sender jumps
suddenly from one segment to . Note that
if the receiver does not implement the modifications re-
quired by the TCP-Peach scheme, then the ACKs for the
dummy segments will not arrive in the expected format. If
this is the case, the sender stops transmitting dummy seg-
ments and starts to use the TCP-Reno [28].

•
At this time, the ACK related to the last transmitted

dummy segment is received by the sender, i.e., the Con-
gestion Avoidance continues as in [28].

In Fig. 3 we compare the TCP-Peach (solid lines) and the
TCP-Reno (dashed lines) in the beginning of a new connec-
tion. In the upper plot, we show the behavior of the conges-
tion window dependent on time. The time unit consid-
ered in Fig. 3 is set equal to . In the bottom plot, we show

, which is the number of acknowledged data segments
in the time interval . These plots were obtained by consid-
ering the equal to 64 segments. It can be seen that the
Sudden Start reaches (64 segments) much earlier than
the Slow Start algorithm. Moreover, it can also be seen in the
bottom plot that the Sudden Start algorithm delivers data seg-
ments much faster than the Slow Start.

C. Rapid Recovery Algorithm

The Rapid Recovery substitutes the classical Fast Recovery
algorithm [28] with the objective of solving the throughput
degradation problem due to link errors highlighted in Sec-
tion II-B.

As shown in Fig. 1, when a segment loss is detected through
duplicate ACKs, we use the original Fast Retransmit al-

gorithm [28]. After completing the Fast Retransmit algorithm,
we apply the Rapid Recovery algorithm, as in Fig. 4, which will
terminate at the time, , when the ACK for the lost data seg-
ment is received, as shown in Fig. 5. Consequently, the Rapid
Recovery lasts for . Then, the sender will enter the Con-
gestion Avoidance phase as depicted in Fig. 1.

The Rapid Recovery first keeps the classical Fast Recovery
conservative assumption that all segment losses are due to net-
work congestion because the TCP layer does not know anything
about the exact causes for the losses, i.e., due to network conges-
tion or due to link errors [37]. Accordingly, the sender halves its
congestion window , as in TCP-Reno [28]. Thus, if
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Fig. 4. TCP-Peach:Rapid Recovery()Rapid Recovery()Rapid Recovery().

was equal to , then it becomes , which
means that the sender will transmit approximately
data segments during the Rapid Recovery phase.

Moreover, in order to probe the availability of network
resources, the sender transmits a certain number of
dummy segments. Note that the value for will be
derived in the following. The ACKs for the dummy segments
will be received after the ACK for the lost data segment,
i.e., they will be received when the sender is in Congestion
Avoidance phase, as shown in Fig. 5.

If the segment loss is due to congestion, then the congested
router can serve segments per round-trip time, approxi-
mately. As a result, the network will accommodate the
data segments, which have high priority, and dummy
segments out of the dummy segments transmitted
during the Rapid Recovery phase.

Therefore, the sender must not increase its congestion
window when it receives the first ACKs for
dummy segments. In fact, these ACKs cannot be considered
as the sign that the loss was due to link errors, i.e., not due
to network congestion. With this objective, is set to

, i.e., , in Fig. 4. This will prevent

the sender to increase its congestion window when the first
ACKs for dummy segments are received during the

Congestion Avoidance.
After receiving ACKs for dummy segments, the

sender increases its congestion window by one segment
each time it receives an ACK for a dummy segment.

We set equal to . As a result, if all dummy
segments are ACKed to the sender, then the congestion window

reaches the value it had before the segment loss was de-
tected, i.e., .

Note that the retransmitted segment may get lost. Let
be the time when the lost segment is retransmitted. If at time

, no ACK has been received for the retransmitted
segment, then this segment may be lost. Accordingly, the Rapid
Recovery is terminated and the sender executes the Sudden Start
because the loss may be due to heavy network congestion.

Now we explain the Rapid Recovery Algorithm, shown in
Fig. 4, in detail. In the beginning, the sender sets some variables:

• .
• .

The variable,allowed dummy segment number( ),
is the number of dummy segments that the sender is al-
lowed to inject into the network. Initially, the sender sets
adsnequal to which is given by

(4)

• .
• .

The sender can artificially inflate the congestion
window during the Rapid Recovery phase. The
variable gives the amount that was
inflated.

•
The variable is set equal to the current time,.

Note that is approximately the time when the lost
data segment has been retransmitted.

•
The variable is a Boolean. When ,

the Rapid Recovery terminates. The sender initializes
.

Then, until the end of the Rapid Recovery algorithm, upon
receiving an ACK for a data segment ,
the sender artificially inflates by 1 and then checks
whether it can transmit a new data segment or not. If it cannot,
i.e., if is lower than or equal to the amount of unac-
knowledged data segments, , ( ),
then the sender checks the value. If , then
the sender transmits two dummy segments and decreases the
value of adsnby two. Finally, when the lost data segment is
acknowledged , is reduced by
the amount it was artificially inflated before, , i.e.,

, is set to 0, the Rapid
Recovery phase is completed ( ) and the Congestion
Avoidance is executed. The arrival of an ACK for a dummy
segment is treated such as the ACK of
data segments, but the congestion window, , is inflated
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Fig. 5. Rapid Recovery phase.

only if . Otherwise, is not increased and the
value is decreased by one.

If at time , the sender is in the Rapid Re-
covery phase, then none of the ACKs for the retransmitted data
segment and the dummy segments have been received within

. This may be due to heavy network congestion. Accord-
ingly, the sender terminates the Rapid Recovery and executes
the Sudden Start.

Note that the Rapid Recovery algorithm relies onself
clocking, i.e., data segment transmissions are triggered by
receiving ACKs [32], in such a way that the amount of data
segments in the network is kept at a constant level which
guarantees the network stability.

IV. TCP-PEACH BEHAVIOR IN CASE OFSEGMENT LOSSES

In this section, we present the behavior of TCP-Peach when
a segment loss is detected. Thus, we show how the Rapid Re-
covery and the Congestion Avoidance work together. We con-
sider two different cases:

Case 1: The segment loss is due to link errors (Sec-
tion IV-A).
Case 2: The segment loss is due to network congestion
(Section IV-B).

A. Segment Losses Due to Link Errors

Let be time instance given in Fig. 6.

•
( , , ).
Let indicate the time instant immediately before.

Suppose that the congestion window of a sender is
at time . Thus, there are approximately out-
standing unacknowledged data segments, i.e.,

. Suppose that none but the first of these segments
as well as their ACKs are lost. These ACKs reach the
sender between time and where .

•
( , ,

, ).
Let indicate the time instant immediately after.

Suppose that at time the sender detects the data segment
loss through receiving duplicated ACKs. According
to the Fast Retransmit algorithm [28], the sender retrans-
mits the lost data segment whose ACK is now expected
to arrive at time . As shown in Fig. 1, the Rapid Re-
covery then starts and the sender sets ,

and . It follows that at
time

(5)

• (where )
( , ,

, ).
Upon receiving each ACK for data segments, the

senderinflates its by one, thus, (5) holds until the
time when the sender receives ACKs. Note
that . Since the congestion window

is smaller than the amount of unacknowledged data
in the time interval , it follows that (5)

holds; therefore the sender cannot transmit any new data
segment. Upon receiving each ACK, the sender trans-
mits two dummy segments and decreases by two
segments. Thus, the dummy segments are transmitted at
double the transmission rate of the data segments before

. If the network supports this rate, then the dummy
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Fig. 6. Rapid Recovery behavior when a segment loss occurs due to link errors.

segments will be received and ACKed by the receiver.
At time , the sender parameters are ,

, , and .
Moreover, there will be the ACKs of data
segments expected by the sender, and dummy
segments in the path.

•
( , ,

).
In the time interval , the sender inflates by

one segment upon receiving each ACK. After each infla-
tion the congestion window becomes
. Consequently, the sender transmits a new data segment

and is increased by one. If there is no conges-
tion along the path in the time interval , the sender
receives the ACKs approximately at the same rate it was
transmitting before . Therefore, it also transmits new
data segments approximately at the same rate it was trans-
mitting before .

•
( , ,

).
At time , the sender receives the ACK of the lost and

retransmitted data segment. Then is decreased by
the amount it was artificially inflated before and thus,

. In this way, the Rapid Recovery
phase is over and the sender enters the Congestion
Avoidance phase as shown in Fig. 1. Note that since
the ACK for the retransmitted segments also acknowl-
edges all data segments transmitted before time ,
there are only outstanding data segments, i.e.,

, at time .
• (where )

( , ,
).
The sender receives the ACKs for the first

dummy segments transmitted in the time interval .
Since is higher than 0, i.e., , the sender
does not increase the congestion window size , and
decreases the value of by one. At time ,
reaches the value 0, i.e., .

Note that in the time interval the sender does
not transmit any new data segment because the relation

always holds.
• (where )

( , ,
).

The sender receives the ACKs for the last
dummy segments transmitted in the time interval .
Since the value is 0, the sender increases by
one segment each time it receives an ACK. As a result,

, and thus, the sender transmits a
new data segment and increases the value by one
segment.

•
( , ).
At time , the congestion window is

and the number of outstanding data segments is
. The TCP parameters ( ,

and ) are the same as they were before the
data segment loss was detected.

Note that the only effect of a segment loss due to link errors
is that the sender stops transmitting new data segments in the
time intervals and . If there is enough bandwidth
available, then in the time interval , the sender trans-
mits new data segments at double the rate it was transmitting
before the data segment loss was detected. If there are enough
resources, the only effects of a data segment loss due to link er-
rors on the throughput is that the sender transmits less
data segments.

In Fig. 7, we compare the Rapid Recovery (solid lines) and the
Fast Recovery (dashed lines) algorithms. In both cases, we force
the 100th segment to be lost at time when the congestion
window is equal to 30. In the upper plot, we show the be-
havior of the congestion window dependent on time, and
in the bottom plot, we show the number of acknowledged data
segments . We assumed s. The segment
loss is detected approximately at time s.
Accordingly, in the bottom plot of Fig. 7, the congestion window
for both TCP-Peach and TCP-Reno is halved, i.e.,
segments. Then the TCP-Peach sender executes the Rapid Re-
covery, whereas the TCP-Reno executes the Fast Recovery [28].
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Fig. 7. TCP-Peach and TCP-Reno behavior when segment losses occur due to link errors.

Fig. 8. Rapid Recovery behavior when segment losses occur due to network congestion.

In both cases, during this period the congestion window
is inflated by one segment for each ACK received. The sender
receives the ACKs for 27 segments, thus the congestion window

increases up to 42 segments in the bottom plot of Fig. 7.
At time s the sender receives the ACK
for the lost segment. As a result, both TCP-Peach and TCP-Reno
decrease the congestion window, i.e., segments,
and enter the Congestion Avoidance phase. In this phase, the
TCP-Peach receives the ACKs for the dummy segments trans-
mitted during the Rapid Recovery phase. Accordingly, in the
bottom plot of Fig. 7 from time s to
time s the congestion window
for TCP-Peach increases from 15 to 30 segments. In this phase,
the congestion window for TCP-Reno [28] increases by
only one segment per [39]. This explains why in the upper
plot of Fig. 7, increases more rapidly for TCP-Peach
than the TCP-Reno.

B. Segment Losses Due to Network Congestion

In order to be agood network citizen, a flow should decrease
its transmission rate by a factor two when the network is con-
gested [23]. Here we show that TCP-Peach complies with this
requirement.

Consider a single connection flowing through a link. Letbe
time instance given in Fig. 8.

•
( , , ).
Suppose that the congestion window of a sender

is at time . Thus, there are approximately
outstanding unacknowledged data segments, i.e.,

.
•

( , ,
, ).
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Suppose that at time the sender detects the data
segment loss through receiving duplicated ACKs.
Suppose that the above segment loss is due to network
congestion, i.e., the connection path can accommodate
at most a transmission rate given approximately by

.
According to the Fast Retransmit algorithm [28], the

sender retransmits the lost data segment and sets
. As shown in Fig. 1, the Rapid Recovery then

starts and the sender sets and
.

• (where )
( , ,

, ).
Upon receiving each ACK, the senderinflatesits

by one segment, thus (5) holds until the timewhen
the sender receives ACKs. Note that

. Since the congestion window is smaller
than the amount of unacknowledged data in the
time interval , it follows that (5) holds; therefore the
sender cannot transmit any new data segment.

Upon receiving each ACK, the sender transmits two
dummy segments and decreases by two segments.
Accordingly, in the time interval the sender
transmits dummy segments at a rate which is
approximately equal to . Since the
network path can accommodate at most a transmission
rate of , about the half of the transmitted
dummy segments are lost, i.e., only dummy
segments reach the destination.

At time , the sender parameters are: ,
, and

. Moreover, the sender is still waiting for the ACKs of
data segments transmitted beforeand there

are dummy segments in the path.
•

( , ,
).

In the time interval , upon receiving each ACK,
the sender inflates by one segment. After each infla-
tion the congestion window is . Con-
sequently, the sender transmits a new data segment and

is increased by one.
•

( , ,
).

At time , the sender receives the ACK of the lost
and retransmitted data segment. Then, is decreased
by the amount it was artificially inflated before and thus,

. Moreover, there are only
outstanding data segments, i.e., .

• (where )
( , ,

).
The sender receives the ACKs for the dummy

segments transmitted in the time interval . Since
is higher than 0, i.e., , the sender does not

increase the congestion window size, , and decreases
the value of by one. At time , reaches the
value 0, i.e., .

Note that in the time interval the sender does
not transmit any new data segment because the relation

always holds.
•

( , ).
At time , the congestion window is

and the number of outstanding data segments
is and there are no more dummy
segments or their ACKs in the network. Note that the
TCP parameters ( and ) are the same as in
the TCP-Reno case.

In Fig. 9, we show that the behaviors of TCP-Peach and
TCP-Reno are the same when a segment loss occurs due to
network congestion. We force the 100th segment to be lost
for network congestion when the congestion window
is equal to 30. In the upper plot, we show the behavior of
the congestion window dependent on , and in
the bottom plot, we show the number of acknowledged data
segments . We assumed s. At time

s, the sender (both in TCP-Peach and TCP-Reno
case) detects a data segment loss and thus retransmits the lost
segment and halves its congestion window , as shown
in the upper plot of Fig. 9. For , the
sender executes the Rapid Recovery in the TCP-Peach case and
the Fast Recovery in the TCP-Reno case. In this time interval,
the sender artificially inflates its congestion window by 1
for each ACK received. Moreover, in the TCP-Peach case, the
sender transmits dummy segments. At time ,
the ACK for the retransmitted data segment is received.
Accordingly, the sender decreases the congestion window

by the amount it was artificially inflated and it enters the
Congestion Avoidance phase. Since the data segment loss was
due to network congestion, in the TCP-Peach case, the majority
of the dummy segments transmitted at
are discarded by the network because they have low priority.
As a result, for , the sender does not increase
its congestion window , due to the arrivals of the ACKs
for the dummy segments. This explains why TCP-Peach and
TCP-Reno results overlap in Fig. 9.

V. SIMULATION EXPERIMENTS

We evaluate the performance of TCP-Peach in terms of
goodput and fairness through simulations when several con-
nections share the same link. More in detail, in Section V-A,
we compare the goodput performance of TCP-Peach and
TCP-Reno in satellite networks, while in Section V-B, we
evaluate the fairness of TCP-Peach. Further simulation results
along with an analytical model of TCP-Peach can be found in
[34].

A. Goodput Performance

The TCP-Reno implementation considered here is suggested
in [22] and is also known as New Reno because it removes
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Fig. 9. The behavior of TCP-Peach and TCP-Reno when segment losses occur due to network congestion.

Fig. 10. Simulation scenario.

certain problems of the original Reno [21], [26]. Also, we as-
sume that both TCP-Reno and TCP-Peach apply theSelective
Acknowledgment(SACK) option [31]. Experimental results in
[25] show that TCP-New Reno augmented with SACK option
[31] gives the best performance in satellite networks.

We simulate the system in Fig. 10 wheresenders transmit
data to receivers through a satellite channel. Note that al-
though we consider only a GEO satellite system, we have ob-
tained similar results for LEO and MEO satellite systems as
well. The streams are multiplexed in the Earth Station A,
whose buffer can accommodate segments. Both data and
dummy segments may get lost due to link errors with a prob-
ability . As in [25], we assume that ,

segments, segments. We also assume that the link
capacity is segments/s which is approximately 10
Mb/s for TCP segments of 1000 bytes. The value consid-
ered is ms.

All the results shown in this section have been obtained by
considering the system behavior for s, which
is 1000 times the round-trip time value. Preliminary experi-
ments on the physical testbed provided by “ACTS Experiment
154—Investigation of TCP Performance Relative to Distinguish
between Errors and Congestion” confirm the simulation results
shown in this section [35].

In Fig. 11 we compare the goodput values of TCP-Reno and
TCP-Peach for different values of loss probabilities due to link
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Fig. 11. Goodput performance comparison of TCP-Peach and TCP-Reno for
different values ofP .

errors, .2 In Fig. 11, the goodput obtained using TCP-
Peach is always higher than in TCP-Reno case. When the loss
probability for link errors is low , the goodput in-
crease obtained using TCP-Peach is mostly due to the Sudden
Start Algorithm. In fact, packet losses due to link errors are very
rare, i.e., almost all packet losses are due to network conges-
tion, thus, the Rapid Recovery does not give any advantage in
this case compared to Fast Recovery [28]. However, for
values higher than , the goodput of TCP-Reno decreases
because of the packet losses due to link errors. The goodput
of TCP-Peach is higher because using the Rapid Recovery the
congestion window increases more rapidly when packet
losses occur due to link errors.

TCP-Peach obtains higher goodput transmitting dummy seg-
ments. Since dummy segments do not carry any new informa-
tion, they cause overhead in the network. In Fig. 12, we show
the overhead dependent on . As it can be seen in Fig. 12,
when , the overhead is equal to 17.21%, which
is the maximum value. However, in the same case, TCP-Peach
achieves 30.65% higher goodput than the TCP-Reno as shown
in Fig. 11.

In Fig. 13, we show the goodput of TCP-Peach and TCP-Reno
for different values of the link capacity. We assumed

. Note that for low values of the link capacity, the
goodput values obtained by TCP-Peach and TCP-Reno are al-
most equal, because the majority of segment losses is due to net-
work congestion. For segment losses caused by link errors, the
congestion window of TCP-Reno is always small. As a re-
sult, in Fig. 13 the goodput for TCP-Reno does not exceed 620
packets/s even when the link capacityis very high. The Rapid
Recovery algorithm solves this problem, as shown in Fig. 13.

Currently, web applications are very popular in the Internet.
Therefore, we simulated the case in Fig. 10 whereTCP-Peach
senders transmit web pages, each withsegments. As soon as a
web page transfer is completed, i.e., all ACKs forsegments of

2The bit-error rate (BER) in satellite networks can be as high as10 . For
TCP segments of 1000 bytes, the BER10 gives a segment loss probability
P higher than10 even if a powerful decoding algorithm is applied.

Fig. 12. Overhead introduced by dummy segments for different values of
P .

Fig. 13. Goodput performance comparison of TCP-Peach and TCP-Reno for
different values of the link capacityc.

one web page are received, the sender then begins to transmit a
new web page. In Fig. 14, we show the average time needed
by each TCP-Peach sender to transfer a web page with
segments. Note that is an important performance parameter
for web users. In Fig. 14, we also show the simulation results in
cases of connections using TCP-Reno [28] and TCP-Reno with
the Increased Initial Window option [4]. We assume the SACK
option [31] is implemented in all cases. In Fig. 14, TCP-Peach
outperforms TCP-Reno because the Sudden Start is faster than
the Slow Start. In Fig. 15, we show the goodput values where
TCP-Peach achieves the highest goodput performance.

Now let be the ratio between the goodput ob-
tained by TCP-Peach and the goodput obtained by TCP-Reno
with the Fast Start modifications [36] (TCP-RenoFS). In
Fig. 16 we show dependent on the segment
loss probability due to link errors, . In our simulations,
TCP sources transmit files ofsegments. The time interval be-
tween two consecutive file transfers from a sender is equal to
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Fig. 14. Transfers of files ofS = 50 segments: average transfer duration.

Fig. 15. Transfers of files ofS = 50 segments: average goodput.

a random variable which is exponentially distributed with av-
erage value . We considered and s. For each
value of , the file size was set in such a way that is
constant. As a consequence, the offered traffic load is approx-
imately constant. In Fig. 16, when is low and
s, the performance of TCP-Peach and TCP-RenoFS [36] is
approximately equal, i.e., . Otherwise, the
goodput of TCP-Peach is higher than the goodput of TCP-Reno

FS [36]. In Fig. 16, the value of increases
when increases because the Rapid Recovery algorithm
becomes more effective. Also, we observe that when in-
creases, then the value for the initial congestion window utilized
by the Fast Start becomes obsolete and therefore, may not be ap-
propriate for the current traffic load condition. As a result, the
performance of Fast Start decreases as shown in Fig. 16.

B. Fairness

1) Homogeneous Case:We assume that all connections
pass through the same path and run TCP-Peach. Let

Fig. 16. Goodput performance comparison of TCP-Peach and TCP-Reno with
the Fast Start modifications.

Fig. 17. Fairness evaluation in a homogeneous scenario.

represent the number of segments acknowledged in the time
interval for connection , for . In Fig. 17,
we show dependent on timefor ,
which are obtained by simulating the system in Fig. 10 with
parameters , segments, segments,

segments/s, , ms, and
all connections using TCP-Peach. In Fig. 17, at any time,

, for any and . This means that
each TCP-Peach connection is given a fair share of the system
resources. We obtained similar results using other values for
system input parameters.

2) Heterogeneous Case:We consider the system shown in
Fig. 18. There are connections of type and connec-
tions of type . All of them pass through the link connecting
the routers A and B, which is assumed to be the bottleneck. We
assume that the capacity of this congested link is seg-
ments/s. The round trip time and loss probability are assumed
to be and , respectively, for connections of type

.
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Fig. 18. Simulation scenario for the fairness evaluation in heterogeneous environment.

Fig. 19. Fairness evaluation in a heterogeneous scenario: satellite and
terrestrial connections.

In Figs. 19 and 20, (Peach) and (Reno) means that connec-
tions use TCP-Peach and connectionsuse TCP-Reno. We
measure the fairness,, as the ratio between the goodput,, of
connections of type , and the goodput, , of the connections
of type , i.e.

(6)

It is obvious that the fairness becomes higher asapproaches 1.
Using TCP-Peach for satellite connections, we achieve a

more fair share of resources between terrestrial and satellite
connections than the TCP-Reno. In Fig. 19, we assume that
connections pass through a GEO satellite link and thus their
round-trip time is about ms and their loss prob-
ability is assumed to be , , , and

. Connections are assumed to pass only through terres-
trial links, thus no losses occur due to link errors,
and the values are lower. We assumed ms,

Fig. 20. Fairness evaluation in a heterogeneous scenario: TCP-Reno and
TCP-Peach flowing through a GEO satellite channel.

such as the case of a connection between the mail server of
the School of Engineering of the University of Catania, Italy,
and the web server of the School of Electrical and Computer
Engineering of the Georgia Institute of Technology, Atlanta.
In Fig. 19, we show the fairness, , obtained in the
(Peach) & (Reno) case, i.e., TCP-Peach is used for satellite
connections and TCP-Reno is used for terrestrial connections.
We also present the fairness, , obtained in the
(Reno) & (Reno) case, i.e., TCP-Reno is used for both terres-
trial and satellite connections. For the experiments in Fig. 19,
we used , segments and
segments. In Fig. 19, we see that when TCP-Peach is used for
satellite connections we obtain a higher fairness. This result
was expected because TCP-Peach helps satellite connections to
recover from their problems presented in Section II compared
to terrestrial connections.

Now we evaluate the fairness when connections of type
using TCP-Peach and others of typeusing TCP-Reno flow
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through the same path, i.e., a GEO satellite link. In Fig. 20,
we show the fairness . We observe that
is much lower than 1, which is the approximate value for the
fairness if all connections use TCP-Reno. However, note that
when, for example, , in the (Reno)
& (Peach) case the goodput for connections of typeand are

segments/s and segments/s, respectively,
whereas in the (Reno) & (Reno) case we have
segments/s. This means that in the (Reno) & (Peach) case we
have a low decrease in but a high increase in .

VI. CONCLUSION

In this paper, we introduced TCP-Peach, a new congestion
control scheme improving the goodput performance and
fairness in satellite networks. TCP-Peach is based on the use
of dummy segments, which are low-priority segments that do
not carry any new data to the receiver. TCP-Peach requires
the routers along the connection to implement some priority
mechanism at the IP layer. Priority can be supported at the IP
layer by the Type of Service (TOS) option in the traditional
IP, whereas IPv6 explicitly supports several priority levels.
TCP-Peach contains two new algorithms: the Sudden Start and
the Rapid Recovery, as well as the Congestion Avoidance and
the Fast Retransmit as presented in [28] or [14], [15], [1].

The main features of TCP-Peach is that it only requires modi-
fications in the end user behaviors and that it is compatible with
traditional TCP implementations. If the receiver implements the
SACK option [31], straightforward modification of TCP-Peach
as presented here provides goodput performance improvement.
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